Skip to main content
Log in

Conductivity of composite materials based on Me2(WO4)3 and WO3 (Me = Sc, In)

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Composites {Me2(WO4)3xWO3} (Me = Sc, In) (x = 0.5–99%) are synthesized and characterized by XRD and electron microscopy methods and also by the density and specific surface measurements. Temperature dependences of the total conductivity of composites are measured. The contributions of σtot and σel are assessed by the \(\sigma (a_{O_2 } )\) and EMF methods. The concentration dependences of conductivity and activation energy are plotted based on the σtot and σion data. It is shown that (a) in the interval x = 0–30 vol % WO3 (0–70 mol %), the conductivity is independent of composition and the ionic component prevails; (b) in the interval x = 60–94.5 vol % (90–99 mol %), the electron conductivity prevails and increases with the increase in x; (c) in the x interval of 30–60 vol % WO3 (70–90 mol %), the conductivity is mixed, i.e., electron(n-type)-ionic; the latter region represents the transition interval from ionic to electron conductivity as x increases. These data are compared with the results obtained earlier for MeWO4-WO3 composites (Me = Ca, Sr, Ba). As regards the structural topology, the {Me2(WO4)3xWO3} composites pertain to the randomly distributed type. It is shown that in contrast to {MeIIWO4 · xWO3} composites, the composites under study do not form the nonautonomous interface phase with the high ionic conductivity. The possible reasons for the observed differences in the topology and the conduction type of composites based on MeWO4 and Me2(WO4)3 are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uvarov, N.F., Kompozitsionnye tverdye elektrolity (Composite Solid Electrolytes), Novosibirsk: SO RAN, 2008.

    Google Scholar 

  2. Maier, J., Solid State Ionics, 2003, vol. 157, p. 291.

    Article  Google Scholar 

  3. Maier, J., Solid State Ionics, 2004, vol. 175, p. 7.

    Article  CAS  Google Scholar 

  4. Neiman, A.Ya., Pestereva, N.N., Sharafutdinov, A.R., and Kostikov, Yu.P., Russ. J. Electrochem., 2005, vol. 41, p. 598.

    Article  CAS  Google Scholar 

  5. Yongkai, Zhou, Adams, S., Prasada, Rao R., Edwards, D., Neiman, A., and Pestereva, N., Chemistry of Materials, 2008, vol. 20, p. 6335.

    Article  Google Scholar 

  6. Kulikova, T., Neiman, A., Kartavtseva, A., Edwards, D., and Adams, S., Solid State Ionics, 2008, vol. 178, p. 1714.

    Article  CAS  Google Scholar 

  7. Zhou, Y., Neiman, A., and Adams, S., Phys. Status Solidi (b), 2011, vol. 248, p. 130.

    Article  CAS  Google Scholar 

  8. Neiman, A.Ya. and Kulikova, T.E., Russ. J. Electrochem., 2007, vol. 43, p. 682.

    Article  CAS  Google Scholar 

  9. Neiman, A.Ya., Solid State Ionics, 1996, vol. 83, p. 263.

    Article  CAS  Google Scholar 

  10. Imanaka, N. and Tamura, S., Bull. Chem. Soc. Jpn., 2011, vol. 84, p. 353.

    Article  CAS  Google Scholar 

  11. Diagrammy sostoyaniya sistem tugoplavkikh oksidov: Sprav. Vyp. 5. Dvoinye sistemy (Phase Diagrams of Refractory Oxides. Handbook. No. 5. Binary Systems), Leningrad: Nauka, 1989, part 4.

  12. Richard, A. and Edwards, D., J. Solid State Chem., 2004, vol. 177, p. 2740.

    Article  CAS  Google Scholar 

  13. Hiraiwa, M., Tamura, S., Imanaka, N., Adachi, G., Dabkowska, H., and Dabkowski, A., Solid State Ionics, 2000, vol. 136–137, p. 427.

    Article  Google Scholar 

  14. Imanaka, N., Kobayashi, Y., Tamura, S., and Adachi, G., Solid State Ionics, 2000, vol. 136, p. 319.

    Article  Google Scholar 

  15. Kobayashi, Y., Tamura, S., Imanaka, N., and Adachi, G., Solid State Ionics, 1998, vol. 113–115, p. 545.

    Article  Google Scholar 

  16. Samsonov, G.V., Fiziko-khimicheskie svoistva okislov (Physicichemical Properties of Oxides), Moscow: Metallurgiya, 1978.

    Google Scholar 

  17. Chebotin, V.N. and Perfil’ev, M.V., Elektrokhimiya tverdykh elektrolitov (Electrochemistry of Solid Electrolytes), Moscow: Khimiya, 1978.

    Google Scholar 

  18. Neiman, A.Ya., Uvarov, N.F., and Pestereva, N.N., Solid State Ionics, 2007, vol. 177, p. 3361.

    Article  CAS  Google Scholar 

  19. Ukshe, E.A., Ukshe, A.E., and Bukun, N.G., in Issledovaniya v oblasti khimii ionnykh rasplavov i tverdykh elektrolitov: Sb. nauch. tr. (Studies in the Field of Ionic Melts and Solid Electrolytes. Collection of Papers), Kiev: Naukova dumka, 1985, pp. 3–17.

    Google Scholar 

  20. Sawada, S., Ando, R., and Nomura, S., Phys. Rev., 1951, vol. 84, p. 1054.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Neiman.

Additional information

Original Russian Text © A.Ya. Neiman, A.V. Karapetyan, N.N. Pestereva, 2014, published in Elektrokhimiya, 2014, Vol. 50, No. 1, pp. 66–77.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neiman, A.Y., Karapetyan, A.V. & Pestereva, N.N. Conductivity of composite materials based on Me2(WO4)3 and WO3 (Me = Sc, In). Russ J Electrochem 50, 58–69 (2014). https://doi.org/10.1134/S1023193512110122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512110122

Keywords

Navigation