Russian Journal of Electrochemistry

, Volume 49, Issue 1, pp 67–75 | Cite as

Aluminum foil as anode material of lithium-ion batteries: Effect of electrolyte compositions on cycling parameters

Article

Abstract

Aluminum is used as an example to demonstrate the possibility of spatial stabilization of alloy-forming electrodes of lithium-ion batteries using target formation on their surface of a thin compact inorganic layer and elastic organopolymer coating of products of electroreduction of electrolyte components for improvement of capacity retention and suppression of processes corresponding to irreversible capacity. It is suggested to use aluminum foil as a convenient material and the general approach can be employed as a methodological technique for accelerated composition of an acceptable electrolyte formula for electrodes containing other elements forming alloys with lithium (in particular, silicon and tin).

Keywords

lithium-ion battery anode aluminum electrolyte fluoroethylene carbonate ethylmethyl carbonate vinylene carbonate ethylene sulfite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, W.-J., J. Power Sources, 2011, vol. 196, p. 13.CrossRefGoogle Scholar
  2. 2.
    Park, C.-M., Kim, J.-H., Kim, H., and Sohn, H.-J., Chem. Soc. Rev., 2010, vol. 39, p. 3115.CrossRefGoogle Scholar
  3. 3.
    Tirado, J.L., Mater. Sci. Eng. R, 2003, vol. 40, p. 103.CrossRefGoogle Scholar
  4. 4.
    Inoue, H., Proceedings IMLB, Biarritz, France, June 18–23, 2006, Abstract no. 228.Google Scholar
  5. 5.
    Kuksenko, S.P., Tarasenko, Yu.A., Kovalenko, I.O., and Kartel’, N.T., in Khimiya, fizika i tekhnologiya poverkhnosti (Chemistry, Physics, and Technology of Surface), Kiev: Nauk. dumka, 2009, issue 15, p. 144.Google Scholar
  6. 6.
    Kuksenko, S.P., Kovalenko, I.O., Tarasenko, Yu.A., and Kartel’, N.T., Khim., Fiz. Tekhnol. Poverkhn., 2010, vol. 1, p. 57.Google Scholar
  7. 7.
    Hamon, Y., Brousse, T., Jousse, F., Topart, P., Buvat, P., and Schleich, D.M., J. Power Sources, 2001, vol. 97–98, p. 185.CrossRefGoogle Scholar
  8. 8.
    Wang, C.Y., Meng, Y.S., Ceder, G., and Li, Y., J. Electrochem. Soc., 2008, vol. 155, p. A615.CrossRefGoogle Scholar
  9. 9.
    Ui, K., Minami, T., Ishikawa, K., Idemoto, Y., and Koura, N., Electrochem., 2005, vol. 73, p. 279.Google Scholar
  10. 10.
    Chen, Zh., Qian, J., Ai, X., Cao, Y., and Yang, H., Electrochim. Acta, 2009, vol. 54, p. 4118.CrossRefGoogle Scholar
  11. 11.
    Lei, X., Xiang, J., Ma, X., Wang, Ch., Yi, Z., and Sun, J., J. Power Sources, 2007, vol. 166, p. 509.CrossRefGoogle Scholar
  12. 12.
    Lei, X., Wang, Ch., Yi, Z., Liang, Y., and Sun, J., J. Alloy Compd., 2007, vol. 429, p. 311.CrossRefGoogle Scholar
  13. 13.
    Lindsay, M.J., Wang, G.X., and Liu, H.X., J. Power Sources, 2003, vol. 119–121, p. 84.CrossRefGoogle Scholar
  14. 14.
    Fleischauer, M.D., Obrovac, M.N., and Dahn, J.R., J. Electrochem. Soc., 2008, vol. 155, p. A851.CrossRefGoogle Scholar
  15. 15.
    Fleischauer, M.D., Obrovac, M.N., and Dahn, J.R., J. Electrochem. Soc., 2006, vol. 153, p. A1201.CrossRefGoogle Scholar
  16. 16.
    Jeong, G.J., Kim, Y.U., Sohn, H.J., and Kang, T., J. Power Sources, 2001, vol. 101, p. 201.CrossRefGoogle Scholar
  17. 17.
    Trifonona, A.V., Momchilov, A.A., Puresheva, B.L., and Abrahams, I., Solid State Ionics, 2001, vol. 143, p. 319.CrossRefGoogle Scholar
  18. 18.
    Rao, B.M.L., US Patent no. 400492, 1977.Google Scholar
  19. 19.
    McAlister, A.J., Bull. Alloy Phase Diagrams, 1982, vol. 3, p. 177.CrossRefGoogle Scholar
  20. 20.
    ASM Handbook. Alloy Phase Diagrams, Baker, H., Ed., ASM International, Materials Park, Ohio, 1992, pp. 2–47.Google Scholar
  21. 21.
    Thackeray, M.M., Vaugheya, J.T., Johnson, C.S., Kropf, A.J., Benedek, R., Fransson, L.M.L., and Edstrom, K., J. Power Sources, 2003, vol. 113, p. 124.CrossRefGoogle Scholar
  22. 22.
    Kuksenko, S.P., Zh. Prikl. Khim., 2010, vol. 83, p. 589.Google Scholar
  23. 23.
    Zhang, Sh.Sh., J. Power Sources, 2006, vol. 162, p. 1379.CrossRefGoogle Scholar
  24. 24.
    Abe, K., Miyoshi, K., Hattori, T., Ushigoe, Y., and Yoshitake, H., J. Power Sources, 2008, vol. 184, p. 449.CrossRefGoogle Scholar
  25. 25.
    Sazhin, S.V., Gorodyskii, A.V., Khimchenko, M.Y., Kuksenko, S.P., and Danilin, V.V., J. Electroanal. Chem., 1993, vol. 344, p. 61.CrossRefGoogle Scholar
  26. 26.
    Kedrinskii, I.A., Gerasimova, L.K., Shilkin, V.I., and Shmmyd’ko, I.I., Russ. J. Electrochem., 1995, vol. 31, p. 329.Google Scholar
  27. 27.
    Jeong, S.-K., Inaba, M., Mogi, R., Iriyama, Y., Abe, T., and Ogumi, Z., Langmuir, 2001, vol. 17, p. 8281.CrossRefGoogle Scholar
  28. 28.
    Mogi, R., Inaba, M., Jeong, S.-K., Iriyama, Y., Abe, T., and Ogumi, Z., J. Electrochem. Soc., 2002, vol. 149, p. A1578.CrossRefGoogle Scholar
  29. 29.
    McMillan, R., Slegr, H., Shu, Z.X., and Wang, W., J. Power Sources, 1999, vol. 81–82, p. 20.CrossRefGoogle Scholar
  30. 30.
    Aurbach, D., Gamolsky, K., Markovsky, B., Gofer, Y., Schmidt, M., and Heider, U., Electrochim. Acta, 2002, vol. 47, p. 1423.CrossRefGoogle Scholar
  31. 31.
    Ota, H., Sakata, Y., Inoue, A., and Yamaguchib, S., J. Electrochem. Soc., 2004, vol. 151, p. A1659.CrossRefGoogle Scholar
  32. 32.
    Ota, H., Shima, K., Ue, M., and Yamaki, J., Electrochim. Acta, 2004, vol. 49, p. 565.CrossRefGoogle Scholar
  33. 33.
    Wrodnigg, G.H., Besenhard, J.O., and Winter, M., J. Electrochem. Soc., 1999, vol. 146, p. 470.CrossRefGoogle Scholar
  34. 34.
    Ein-Eli, Y., Thomas, S.R., Koch, V., Aurbach, D., Markovsky, B., and Schechter, A., J. Electrochem. Soc., 1996, vol. 143, p. L273.CrossRefGoogle Scholar
  35. 35.
    Frackowiak, E. and Kuksenko, S., J. Power Sources, 1998, vol. 72, p. 174.CrossRefGoogle Scholar
  36. 36.
    Kuksenko, S.P., Zh. Prikl. Khim., 1996, vol. 69, p. 1658.Google Scholar
  37. 37.
    Gorodyskii, A.V., Sazhin, S.V., Kuksenko, S.P., Khimchenko, M.Yu., Skakal’skii, A.I., and Klimenko, A.N., USSR Inventor’s Certificate No. 1551183, 1989.Google Scholar
  38. 38.
    Kuksenko, S.P., Sazhin, S.V., and Khimchenko, M.Yu., USSR Inventor’s Certificate No. 1667580, 1991.Google Scholar
  39. 39.
    Chen, Yufei., Devine, T.M., Evans, J.W., Monteiro, O.R., and Brown, I.G., J. Electrochem. Soc., 1999, vol. 146, p. 1310.CrossRefGoogle Scholar
  40. 40.
    Bryngelsson, H., Stjerndahl, M., Gustafsson, T., and Edstrom, K., J. Power Sources, 2007, vol. 174, p. 970.CrossRefGoogle Scholar
  41. 41.
    Matsuaka, O., Hiwara, A., Omi, T., Toriida, M., Hayashi, T., Tanaka, C., Saito, Y., Ishida, T., Tan, H., Ono, S.S., and Yamamoto, S., J. Power Sources, 2002, vol. 108, p. 128.CrossRefGoogle Scholar
  42. 42.
    El Ouatani, L., Dedryvere, R., Siret, C., Biensan, P., Reynaud, S., Iratcabal, P., and Gonbeau, D., J. Electrochem. Soc., 2009, vol. 156, p. A103.CrossRefGoogle Scholar
  43. 43.
    Wang, Y., Nakamura, S., Tasaki, K., and Balbuena, P.B., J. Am. Chem. Soc., 2002, vol. 124, p. 4408.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Chuiko Institute of Surface ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations