Skip to main content
Log in

Kinetics and mechanism of oxygen electroreduction in alkaline solutions on xc-72r carbon black modified by products of pyrolysis of cobalt 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Cathodic oxygen reduction on XC-72R carbon black modified by products of pyrolysis of cobalt 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin (CoTMPP) (XC-72M) was studied. When XC-72R carbon black is modified, new active centers (ACs) are formed on the surface of the carbon support, on which the direct reaction to OH- occurs, as shown using the rotating ring-disk electrode technique. The process of oxygen reduction on nonmodified carbon black occurs via the serial path. At low polarizations, the dependence of potential on pH corresponds to the slope of ∼30 mV both for the carbon material and modified carbon black. This value is close to the coefficient in the Nernst equation for H2/HO 2 . The slow stage of oxygen reduction is the transfer of the first or second electron to the adsorbed molecule. Herewith, the difference in the kinetics and mechanism of oxygen reduction on XC-72R and XC-72M is related to a stronger adsorption interaction of oxygen and ACs on XC-72M. The {ie1113-1} value in the pH range of 12–14.6 is −15 to −20 mV both for XC-72R and XC-72M. In the case of the second halfwave potential on XC-72R, it is −50 to −60 mV. The observed effects are explained by a change in the surface state of catalysts at an increase in adsorption of OH ions at an increase in pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mayrhofer, K.J.J., Crampton, A.S., Wiberg, G.K.H., and Arenz, M., J. Electrochem. Soc., 2008, vol. 155.

  2. Tarasevich, M.R. and Khrushcheva, E.I., Kinetika slozhnykh elektrokhimicheskikh reaktsii (Kinetics of Complex Electrochemical Reactions), Kazarinov, V.E., Ed., Moscow: Nauka, 1981.

    Google Scholar 

  3. Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, New York: Wiley, 1988.

    Google Scholar 

  4. Tarasevich, M.R., Burshtein, R.Kh., and Radyushkina, K.A., Elektrokhimiya, 1970, vol. 6, p. 372.

    CAS  Google Scholar 

  5. Blizanac, B.B., Ross, P.N., and Markovic, N.M., Electrochim. Acta, 2007, vol. 52, p. 2264.

    Article  CAS  Google Scholar 

  6. Vilinskaya, V.S. and Tarasevich, M.R., Elektrokhimiya, 1979, vol. 9, p. 1187.

    Google Scholar 

  7. Brezina, M., Ber. Bunsen. Ges., 1973, vol. 77, p. 849.

    CAS  Google Scholar 

  8. Bagotsky, V.S., Tarasevich, M.R., Raduishkina, K.A., et al., J. Power Sources, p. 1977.

  9. Taylor, R.J. and Humffray, A.A., J. Electroanal. Chem., 1975, vol. 64, p. 63.

    Article  CAS  Google Scholar 

  10. Tarasevich, M.R., Sabirov, F.Z., and Burshtein, R.Kh., Elektrokhimiya, 1971, vol. 7, p. 404.

    CAS  Google Scholar 

  11. Tarasevich, M.R. and Sabirov, F.Z., Elektrokhimiya, 1969, vol. 5, p. 643.

    CAS  Google Scholar 

  12. Appleby, A.J., Fleisch, J., and Savy, M., J. Catalysis, 1976, vol. 44, p. 281.

    Article  CAS  Google Scholar 

  13. Tarasevich, M.R., Sabirov, F.Z., Mertsalova, A.P., and Burshtein, R.Kh., Elektrokhimiya, 1968, vol. 4, p. 432.

    CAS  Google Scholar 

  14. Appleby, A.J. and Marie, J., Electrochim. Acta, 1979, vol. 24, p. 195.

    Article  CAS  Google Scholar 

  15. Behret, H., Clauberg, W., and Sandsteade, G., Bunsen-Ges. Phys. Chem., Ber., 1979, vol. 2, p. 139.

    Article  Google Scholar 

  16. Brodskii, E.S., Radyushkina, K.A., Kalinkevich, G.A., et al., Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 1, p. 139.

    CAS  Google Scholar 

  17. Kruusenberg, I., Alexeyeva, N., and Tammeveski, K., Carbon, 2009, vol. 47, p. 651.

    Article  CAS  Google Scholar 

  18. Yang, H.-H. and McCreery, R.L., J. Electrochem. Soc., 2000, vol. 147, p. 3420.

    Article  CAS  Google Scholar 

  19. Taylor, R.J. and Humffray, A.A., J. Electroanal. Chem., 1975, vol. 64, p. 95.

    Article  CAS  Google Scholar 

  20. Tarasevich, M.R., Radiushkina, K.L., and Andruseva, S.I., Bioelectrochem. and Bioenerg., 1977, vol. 4, p. 18.

    Article  CAS  Google Scholar 

  21. Sun, G.Q., Wang, J.T., and Savinell, R.F., J. Appl. Electrochem., 1998, vol. 28, p. 1087.

    Article  CAS  Google Scholar 

  22. Lalande, G., Faubert, G., Cot’e, R., Guay, D., Dodelet, J.P., Weng, L.T., and Bertrand, P., J. Power Sources, 1996, vol. 61, p. 227.

    Article  CAS  Google Scholar 

  23. Zhao, F., Harnisch, F., Schroder, W., Scholz, F., Bogdanoff, P., and Herrmann, I., Electrochem. Commun., 2005, vol. 7, p. 1405.

    Article  CAS  Google Scholar 

  24. Gupta, S., Tryk, D., Bae, I., Aldred, W., and Yeager, E., J. Appl. Electrochem., 1989, vol. 19, p. 19.

    Article  CAS  Google Scholar 

  25. Tyurin, V.S., Radyushkina, K.A., Levina, O.A., and Tarasevich, M.R., Russ. J. Electrochem., 2001, vol. 37, p. 843.

    Article  CAS  Google Scholar 

  26. Tarasevich, M.R. and Bogdanovskaya, V.A., Sovremennye problemy fizicheskoi khimii (Modern Problems of Physical Chemistry), Moscow: Granitsa, 2005.

    Google Scholar 

  27. Nallathambi, V., Lee, J.-W., Kumaraguru, S.P., Wu, G., and Popov, B.N., J. Power Sources, 2008, vol. 183, p. 34.

    Article  CAS  Google Scholar 

  28. Levich, V.G., Physicochemical Hydrodynamics, New Jersey: Prentice-Hall. Scripta Technica, Inc, 1962.

    Google Scholar 

  29. Spravochnik khimika (Chemists’s Reference Guide), 1952, vol. 3, p. 414.

  30. Davis, R.E., Horvath, G.L., and Tobias, C.W., Electrochim. Acta, 1967, vol. 12, p. 287.

    Article  CAS  Google Scholar 

  31. Knaster, M.B. and Apel’baum, L.A., Zh. Fiz. Khim., 1964, no. 38, p. 223.

  32. Zembura, Z., Kolny, H., and Rocsniki, Chem. Ann. Soc. Chim. Polonorum, 1967, vol. 41, p. 1629.

    CAS  Google Scholar 

  33. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsom (Rotating Ring-Disc Electrode), Moscow: Nauka, 1987.

    Google Scholar 

  34. Karabanov, A.A., Vilinskaya, V.S., and Burshtein, R.Kh., Elektrokhimiya, 1978, vol. 14, p. 104.

    Google Scholar 

  35. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1982.

    Google Scholar 

  36. Anderson, A.B. and Zhang, T., Electrochim. Acta, 2007, vol. 53, p. 982.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Tarasevich.

Additional information

Original Russian Text © M.R. Tarasevich, P.V. Mazin, N.A. Kapustina, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 11, pp. 1222–1232.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasevich, M.R., Mazin, P.V. & Kapustina, N.A. Kinetics and mechanism of oxygen electroreduction in alkaline solutions on xc-72r carbon black modified by products of pyrolysis of cobalt 5,10,15,20-tetrakis(4-methoxyphenyl)porphyrin. Russ J Electrochem 48, 1113–1122 (2012). https://doi.org/10.1134/S1023193512080137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512080137

Keywords

Navigation