Skip to main content
Log in

Diffusion mass transfer in a closed electrolytic microcell. Numerical simulation for the Cu/CuSO4(H2SO4)/Cu system

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

This paper reports the results of mathematical simulation of electrolysis in a closed electrolytic microcell in a Cu/CuSO4(H2SO4)/Cu system, in which a two-stage electrode reaction, forming a relatively stable intermediate, and chemical reactions between the electrolyte components take place. The dependence of the current that flows through the cell on the electrolysis time and voltage on the cell electrodes was studied by numerical methods. The steady-state profiles of the concentrations of copper-containing species were calculated. The diffusion mass transfer rate in the cell was evaluated. The results were compared with the calculated data for the cell with a recessed electrode configuration with the indicator electrode lying at the bottom of a hole in the insulator. The mass transfer rate in the closed microcell was higher than on the recessed electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zelinsky, A.G. and Pirogov, B.Ya., Electrochim. Acta, 2009, vol. 54, p. 6707.

    Article  CAS  Google Scholar 

  2. Landolt, D., J. Electrochem. Soc., 2002, vol. 149, p. 9.

    Article  Google Scholar 

  3. Mehdizadeh, S., Dukovic, J.O., Andricacos, P.S., Romankiw, L.T., and Cheh, H.Y., J. Electrochem. Soc., 1992, vol. 139, p. 78.

    Article  CAS  Google Scholar 

  4. Maner, A., Harsch, S., and Ehrfeld, W., Plat. Surf. Finish., 1988, vol. 75, no. 3, p. 60.

    CAS  Google Scholar 

  5. Bjerrum, J., Stability Constants. P. II. Inorganic Ligands, London, 1958.

  6. Volgin, V.M. and Davydov, A.D., Russ. J. Electrochem., 2008, vol. 44, p. 459.

    Article  CAS  Google Scholar 

  7. Pirogov, B.Ya. and Zelinsky, A.G., Electrochim. Acta, 2004, vol. 49, p. 3283.

    Article  CAS  Google Scholar 

  8. Molodov, A.I. and Losev, V.V., in Itogi nauki i tekhniki. Elektrokhimiya, Moscow: VINITI, 1971, vol. 7, pp. 65–113.

    Google Scholar 

  9. Gamburg, Yu.D. and Godish-Klushina, M.V., Elektrokhimiya, 1996, vol. 32, p. 660 [Russ. J. Electrochem., 1996, vol. 32, p. 611].

    Google Scholar 

  10. Demedts, G. and Van Peteghem, A.P., Corros. Sci., 1987, vol. 18, p. 1041.

    Article  Google Scholar 

  11. Hayashi, T. and Yokoy, M., Denky Cagaku, 1970, vol. 47, p. 654.

    Google Scholar 

  12. Zelinsky, A.G. and Pirogov, B.Ya., Corros. Sci., 2006, vol. 48, p. 2867.

    Article  CAS  Google Scholar 

  13. Newman, J., Electrochemical Systems, Mir, Moscow, 1977, p. 260.

    Google Scholar 

  14. Gileadi, E. and Tsionsky, V., J. Electrochem. Soc., 2000, vol. 147, p. 567.

    Article  CAS  Google Scholar 

  15. Randles, J.E.B., Trans. Faraday Soc., 1948, vol. 44, p. 327.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zelinsky.

Additional information

Original Russian Text © A.G. Zelinsky, B.Ya. Pirogov, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 8, pp. 851–859.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zelinsky, A.G., Pirogov, B.Y. Diffusion mass transfer in a closed electrolytic microcell. Numerical simulation for the Cu/CuSO4(H2SO4)/Cu system. Russ J Electrochem 48, 773–781 (2012). https://doi.org/10.1134/S1023193512070142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512070142

Keywords

Navigation