Skip to main content
Log in

Calculation of effective diffusion coefficient in a colloidal crystal by the finite-element method

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The work is devoted to the calculation of effective diffusion coefficient of ions from the bulk solution to the electrode through a mask and the calculation of the distribution of the limiting current density over the electrode surface. A colloidal crystal, which is formed by orderly arranged monodispersed spherical particles, serves as a mask. It is shown that the diffusion of electroactive ions in the pores between spherical particles can be simulated by unit cells with rhombic, rectangular, or triangular cross-section. In the latter case, the cell side surface has no periodical boundaries. This simplifies significantly the numerical solution of the Laplace’s equation by the finite-element method. The effective diffusion coefficient in the bulk colloidal crystal is calculated at various values of its porosity. The calculated results agree well with the literature data. It is found that, for close-packed spherical particles, the relative effective diffusion coefficient in the bulk colloidal crystal is 0.16. The thicknesses of transient zones adjacent to the electrode surface and outer boundary of colloidal crystal and the effective diffusion coefficients for these zones are determined. The dependence of effective diffusion coefficient on the number of spherical particle layers in the colloidal crystal is obtained. The distribution of the limiting current density over the electrode surface is analyzed at various numbers of particle layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Velev, O.D., Tessier, P.M., Lenhoff, A.M., and Kaler, E.W., Nature, 1999, vol. 401, p. 7.

    Article  Google Scholar 

  2. Velev, O.D. and Lenhoff, A.M., Curr. Opin. Colloid Interface Sci., 2000, vol. 5, p. 56.

    Article  CAS  Google Scholar 

  3. Stein, A., Microporous Mesoporous Mater., 2001, vols. 44–45, p. 227.

  4. Braun, P.V. and Wiltzius, P., Curr. Opin. Colloid Interface Sci., 2002, vol. 7, p. 116.

    Article  CAS  Google Scholar 

  5. Texter, J., C. R. Chimie, 2003, vol. 6, p. 1425.

    Article  CAS  Google Scholar 

  6. Photonic Crystals: Advances in Design, Fabrication, and Characterization, Busch, K., Lolkes, S., Wehrspohn, R.B., and Foll, H., Eds., Weinheim: Wiley, 2004.

    Google Scholar 

  7. Meseguer, F., Coll. Surf. A: Physicochem. Eng. Aspects, 2005, vol. 270–271, p. 1.

    Article  Google Scholar 

  8. Asoh, H., Sakamoto, S., and Ono, S., J. Colloid Interface Sci., 2007, vol. 316, p. 547.

    Article  CAS  Google Scholar 

  9. Paquet, C. and Kumacheva, E., Mater. Today, 2008, vol. 11, no. 4, p. 48.

    Article  CAS  Google Scholar 

  10. Nair, R.V. and Vijaya, R., Prog. Quantum Electron., 2010, vol. 34, p. 89.

    Article  CAS  Google Scholar 

  11. Bartlett, P.N., Baumberg, J.J., Birkin, P.R., Ghanem, M.A., and Netti, M.C., Chem. Mater., 2002, vol. 14, p. 2199.

    Article  CAS  Google Scholar 

  12. Spada, E.R., Da Rocha, A.S., Jasinski, E.F., Pereira, G.M.C., Chavero, L.N., Oliveira, A.B., Azevedo, A., and Santorelli, M.L., J. Appl. Phys., 2008, vol. 103, p. 114306.

    Article  Google Scholar 

  13. Xia, X.H., Tu, J.P., Zhang, J., Xiang, J.Y., Wang, X.L., and Zhao, X.B., Appl. Mater. Interfaces, 2010, vol. 2, no. 1, p. 186.

    Article  CAS  Google Scholar 

  14. Sumida, T., Wada, Y., Kitamura, T., and Yanagida, S., Langmuir, 2002, vol. 18, p. 3886.

    Article  CAS  Google Scholar 

  15. Abdelsalam, M.E., Bartlett, P.N., Kelf, T., and Baumberg, J., Langmuir, 2005, vol. 21, p. 1753.

    Article  CAS  Google Scholar 

  16. Hao, Y., Zhu, F.Q., Chien, C.L., and Searson, P.C., J. Electrochem. Soc., 2007, vol. 154, p. D65.

    Article  CAS  Google Scholar 

  17. Hung, D., Liu, Z., Shah, N., Hao, Y., and Searson, P.C., J. Phys. Chem. C, 2007, vol. 111, p. 3308.

    Article  CAS  Google Scholar 

  18. Mahajan, S., Cole, R.M., Soares, B.F., Pelfrey, S.H., Russell, A.E., Baumberg, J.J., and Bartlett, P.N., J. Phys. Chem. C, 2007, vol. 113, p. 9284.

    Article  Google Scholar 

  19. Sapoletova, N., Makarevich, T., Napolskii, K., Mishina, E., Eliseev, A., Van Etteger, A., Rasing, T., and Tsirlina, G., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 15414.

    Article  CAS  Google Scholar 

  20. Newton, M.R., Morey, K.A., Zhang, Y., Snow, R.J., Diwekar, M., Shi, J., and White, H.S., Nano Lett., 2004, vol. 4, p. 875.

    Article  CAS  Google Scholar 

  21. Adier, P.M., Porous Media: Geometry and Transports, Boston: Butterworth-Heinemann, 1992.

    Google Scholar 

  22. Maxwell, C., Treatise on Electricity and Magnetism, vol. 1, London, Oxford: Univ. Press, 1873.

    Google Scholar 

  23. Rayleigh, L., Philos. Mag., 1892, vol. 34, p. 481.

    Google Scholar 

  24. Zuzovsky, M. and Brenner, H., Z. Angew. Math. Phys, 1977, vol. 28, p. 979.

    Article  Google Scholar 

  25. Sangani, A.S. and Acrivos, A., Proc. R. Soc. London, Ser. A, 1983, vol. 386, p. 263.

    Article  Google Scholar 

  26. Cheng, H. and Torquato, S., Proc. R. Soc. London, Ser. A, 1997, vol. 453, p. 1331.

    Article  Google Scholar 

  27. Cheng, H. and Torquato, S., Proc. R. Soc. London, Ser. A, 1997, vol. 453, p. 145.

    Article  CAS  Google Scholar 

  28. Desmet, G. and Deridder, S., J. Chromatogr., A, 2011, vol. 1218, p. 32.

    Article  CAS  Google Scholar 

  29. Kaviany, M., Principles of Heat Transfer in Porous Media, New York: Springer, 1995.

    Book  Google Scholar 

  30. Venema, P., Struis, R.P.W.J., Leyte, J.C., and Bedeaux, D., J. Colloid Interface Sci., 1991, vol. 141, p. 360.

    Article  CAS  Google Scholar 

  31. Blees, M.H. and Leyte, J.C., J. Colloid Interface Sci., 1994, vol. 166, p. 118.

    Article  CAS  Google Scholar 

  32. Kim, A.S. and Chen, H., J. Membr. Sci., 2006, vol. 279, p. 129.

    Article  CAS  Google Scholar 

  33. Starly, B., Yildirim, E., and Sun, W., Comput. Methods Programs Biomed., 2007, vol. 87, p. 21.

    Article  CAS  Google Scholar 

  34. Fiedler, T., Loffler, R., Bernthaler, T., Winkler, R., Belova, I.V., Murch, G.E., and Ochsner, A., Mater. Lett., 2009, vol. 63, p. 1125.

    Article  CAS  Google Scholar 

  35. Petkov, K., Qiu, F., Fan, Z., Kaufman, A.E., and Mueller, K., IEEE Trans. Vis. Comput. Graph., 2009, vol. 15, no. 5, p. 802.

    Article  Google Scholar 

  36. Albrecht, J.D., Knipp, P.A., and Reinecke, T.L., Phys. Rev. B: Condens. Matter, 2001, vol. 63, p. 134303.

    Article  Google Scholar 

  37. Sareni, B., Krahenbuhl, L., Beroual, A., and Nicolas, A., IEEE Trans. Magn., 1997, vol. 33, p. 1580.

    Article  Google Scholar 

  38. Zhou, J., Yu, A., and Zhang, Y., J. Heat Transfer, 2007, vol. 129, p. 363.

    Article  CAS  Google Scholar 

  39. Koroteeva, O., Mogilevskaya, S., Crouch, S., and Gordeliy, E., Eng. Anal. Bound. Elem., 2010, vol. 34, p. 793.

    Article  Google Scholar 

  40. Song, Y.S. and Youn, J.R., Carbon, 2006, vol. 44, p. 710.

    Article  CAS  Google Scholar 

  41. Hassani, B. and Hinton, E., Comput. Struct., 1998, vol. 69, p. 707.

    Article  Google Scholar 

  42. Boutin, C. and Geinndreau, C., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 2010, vol. 82, p. 036313.

    Google Scholar 

  43. Bettega, R., Moreira, M.F.P., Correa, R.G., and Freire, J.T., Particuology, 2011, vol. 9, p. 107.

    Article  Google Scholar 

  44. Carson, J.K., Lovatt, S.J., Tanner, D.J., and Cleland, A.C., Int. J. Refrig., 2003, vol. 26, p. 873.

    Article  Google Scholar 

  45. Stroeven, M., Askes, H., and Sluys, L.J., Comput. Methods Appl. Mech. Engrg., 2004, vol. 193, p. 3221.

    Article  Google Scholar 

  46. Jiang, P.-X. and Lu, X.-C., Int. J. Heat Fluid Flow, 2007, vol. 28, p. 1144.

    Article  CAS  Google Scholar 

  47. Porfiri, M., Nguyen, N.Q., and Gupta, N., J. Mater. Sci., 2009, vol. 44, p. 1540.

    Article  CAS  Google Scholar 

  48. Xing, Y.F., Yang, Y., and Wang, X.M., Compos. Struct., 2010, vol. 92, p. 2265.

    Article  Google Scholar 

  49. Augier, F., Idoux, F., and Delenne, J.Y., Chem. Eng. Sci., 2010, vol. 65, p. 1055.

    Article  CAS  Google Scholar 

  50. Wang, M. and Pan, N., Mater. Sci. Eng. R, 2008, vol. 63, p. 1.

    Article  Google Scholar 

  51. Kamiuto, K., Nagumo, Y., and Iwamoto, M., Appl. Energy, 1989, vol. 34, p. 213.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Volgin.

Additional information

Original Russian Text © V.M. Volgin, A.D. Davydov, T.B. Kabanova, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 8, pp. 898–916.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volgin, V.M., Davydov, A.D. & Kabanova, T.B. Calculation of effective diffusion coefficient in a colloidal crystal by the finite-element method. Russ J Electrochem 48, 817–834 (2012). https://doi.org/10.1134/S1023193512070117

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512070117

Keywords

Navigation