Skip to main content
Log in

Comparative study of turbulent mass transfer in the viscous sublayer using electrochemical method and direct numerical simulations

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In this study we present, analyze and compare the power spectral density of the wall shear stress in a turbulent plane channel flow obtained with different techniques. Experimentally the instantaneous wall shear stress was measured with the electrochemical technique using different probes, which give approximately the same results after applying the transfer function for correction of the probe’s inertia. Numerically, the time evolution of the wall shear stress has been determined using direct numerical simulations (DNS) and large eddy simulations (LES). The results of DNS are in a good agreement with the electrochemical flow measurements. However the power spectra of the wall shear stress obtained with LES shows deviations with respect to DNS at high frequencies because of the spatial filtering inherent to the LES technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Physicochemical Hydrodynamics, USA: Prentice-Hall. Englewood Cliffs, 1962.

    Google Scholar 

  2. Monin, A.S. and Yaglom, A.M., Statistical Fluid Mechanics: Mechanics of Turbulence, USA: MIT Press, 1975.

    Google Scholar 

  3. Schlichting, H., Boundary Layer Theory, USA: Mac Graw-hill, 1987.

    Google Scholar 

  4. Grafov, B.M., Martemianov, S.A., and Nekrasov, L.N., Turbulent Diffusion Layer in Electrochemical Systems, Moscow: Nauka Publication, 1990.

    Google Scholar 

  5. Alekseenko, S.V., Markovich, D.M., Evseev, A.R., Bobylev, A.V., Tarasov, B.V., and Karsten, V.M., Theoretical Foundations of Chemical Engineering, 2007, vol. 41, p. 417.

    Article  CAS  Google Scholar 

  6. Wragg, A.A., Simpson, N.P., Patrick, M.A., Kalcikova, J., and Krysa, J., Russian Journal of Electrochemistry, 2008, vol. 44, p. 413.

    Article  CAS  Google Scholar 

  7. Dumas, T., Lesage, F., Sobolik, V., and Latifi, M.A., Chemical Engineering Research and Design, 2009, vol. 8, p. 962.

    Article  Google Scholar 

  8. Blel, W., Le Gentil-Lelièvre, C., Bénézech, T., Legrand, J., and Legentilhomme, P., Journal of Food Engineering, 2009, vol. 90, p. 422.

    Article  Google Scholar 

  9. Barbier, J.F., Alemany, A., and Martemianov, S., Fusion Engineering and Design, 1998, vol. 43, p. 199.

    Article  CAS  Google Scholar 

  10. Boutoudj, M.S., Ouibrahim, A., Barbeu, F., Deslouis, C., and Martemianov, S., Chemical Engineering and Processing: Process Intensification, 2008, vol. 47, p. 793.

    Article  CAS  Google Scholar 

  11. Huchet, F., Comiti, J., Legentilhomme, P., Solliec, C., Legrand, J., and Montillet, A., International Journal of Heat and Fluid Flow, 2008, vol. 29, p. 1411.

    Article  CAS  Google Scholar 

  12. Huchet, F., Comiti, J., Tihon, J., Montillet, A., and Legentilhomme, P., Journal of Applied Electrochemistiy, 2007, vol. 37, p. 49.

    Article  CAS  Google Scholar 

  13. Ngo Bourn, G.B., Martemianov, S., and Alemany, A., International Journal of Heat and Mass Transfer, 1999, vol. 42, p. 2849.

    Article  Google Scholar 

  14. Martemianov, S. and Okulov, V.L., Journal Applied Electrochemistry, 2002, vol. 32, p. 25.

    Article  CAS  Google Scholar 

  15. Parys, H.V., Tourwé, E., Breugelmans, T., Depauw, M., Deconinck, J., and Hubin, A., Journal of Electroanalytical Chemistry, 2008, vol. 622, p. 44.

    Article  Google Scholar 

  16. Adolphe, X., Danaila, L., and Martemianov, S., Journal of Electroanalytical Chemistry, 2007, vol. 600, p. 119.

    Article  CAS  Google Scholar 

  17. Hanratty, T.J., J. Appl. Electrochem., 1991, vol. 21, p. 1038.

    Article  CAS  Google Scholar 

  18. Mitchell, J.E. and Hanratty, T.J., J. Fluid Mech., 1966, vol. 26, p. 19.

    Article  Google Scholar 

  19. Reiss, L.P. and Hanratty, T.J., AlChE J., 1962, vol. 8, p. 245.

    Article  CAS  Google Scholar 

  20. Alekseenko, S. and Markovich, D.M., J. Appl. Electrochem., 1994, vol. 24, p. 626.

    Article  Google Scholar 

  21. Sobolik, V., Wein, O., Gil, O., and Tribollet, B., Exp. Fluids, 1989, vol. 9, p. 3198.

    Google Scholar 

  22. Nakoryakov, V.E., Burdukov, A.P., Kashinsky, O.N., and Geshev, P.I., Electrodiffusion Method of Investigation into the Local the Local Structure of Turbulent Flows, Novosibirsk: Gasenko, 1986.

    Google Scholar 

  23. Deslouis, C., Huet, F., Robin, S., and Tribollet, B., Int. J. Heat Mass Transfer, 1993, vol. 36, p. 829.

    Article  Google Scholar 

  24. Yapici, S., Patrick, M.A., and Wragg, A.A., J. Appl. Electrochem., 1995, vol. 25, p. 15.

    Article  CAS  Google Scholar 

  25. Legentilhomme, P. and Legrand, J., Int. J. Heat Mass Transfer, 1991, vol. 35, p. 1281.

    Article  Google Scholar 

  26. Legrand, J., Legentilhomme, P., Aouabed, H., Ould-Rouis, M., Nouar, C., and Salem, A., J. Appl. Electrochem., 1991, vol. 21, p. 1063.

    Article  CAS  Google Scholar 

  27. Aouabed, H., Legentilhomme, P., Nouar, C., and Legrand, J., J. Appl. Electrochem., 1994, vol. 24, p. 619.

    Article  Google Scholar 

  28. Evdokimov, Yu.K., Martemianov, S.A., and Gognet, G., Russian J. Electrochem., 1995, vol. 31, p. 1197.

    Google Scholar 

  29. Adolphe, X., Martemianov, S., Palchetti, I., and Mashini, M., J. Appl. Electrochem., 2005, vol. 35, p. 599.

    Article  CAS  Google Scholar 

  30. Lagraa, B., Labraga, L., and Mazouz, A., European J. Mech B/Fluids, 2004, vol. 23, p. 587.

    Article  Google Scholar 

  31. Skurygin, E., Martemianov, S., Vorontyntsev, M., and Grafov, B., Soviet Electrochemistry, 1989, vol. 25, p. 685.

    Google Scholar 

  32. Deslouis, C., Gil, O., and Tribollet, B., J. Fluid. Mech., 1990, vol. 215, p. 85.

    Article  CAS  Google Scholar 

  33. Germano, M., Piomelli, U., Moin, P., and Cabot, W.H., Physics of Fluids, 1991, vol. 3, p. 1760.

    Article  Google Scholar 

  34. Pallares, J., Cuesta, I., and Grau, F.X., International Journal of Heat and Fluid Flow, 2002, vol. 23, p. 346.

    Article  Google Scholar 

  35. Idel’cik, I.E., Mémento des Pertes de Charges, Coefficients de Pertes de Charge Singulières et de Pertes de Charges Par Frottement, Paris: Eyrolles, 1999.

    Google Scholar 

  36. Leveque, M.A., Annales des Mines, 1928, vol. 13, p. 201.

    Google Scholar 

  37. Pallares, J., Vernet, A., Ferré, J.A., and Grau, F.X., Computers and Fluids, 2007, vol. 36, p. 1327.

    Article  CAS  Google Scholar 

  38. Pallares, J. and Grau, F.X., International Journal of Heat and Mass Transfer, 2008, vol. 51, p. 4753.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Martemianov.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 8, pp. 890–897.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martemianov, S., Pallares, J. & Grau, X.F. Comparative study of turbulent mass transfer in the viscous sublayer using electrochemical method and direct numerical simulations. Russ J Electrochem 48, 810–816 (2012). https://doi.org/10.1134/S102319351207004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351207004X

Keywords

Navigation