Skip to main content
Log in

Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method

  • Special Issue of Journal Devoted to the Problems of Mass Transfer in the Electrochemical Systems
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Lattice Boltzmann method (LBM) is used to investigate liquid water transport and distribution in a porous gas diffusion layer (GDL). The GDL with microscopic porous structures is obtained from three-dimensional reconstruction using the stochastic method, and its macroscopic transport properties including permeability and effective diffusivity are numerically predicted which agree well with the existing experimental results. Simulation results show that liquid water transport mechanism in the GDL is capillary fingering and liquid water pathway is interconnected, which confirms the previous experimental results in literature. Further, effects of GC wettability are explored and it is found out that a hydrophilic GC leads to less liquid water accumulated in the GDL compared with a hydrophobic GC. In addition, effects of GDL wettability on liquid water distribution are explored. Simulation results show that PTFE content itself cannot determine liquid water distribution inside the GDL and detailed distributions of hydrophobic and hydrophilic regions within the GDL also play an import role. Moreover, a hydrophilic GDL is more beneficial for reactant transport than a hydrophobic GDL if liquid water presents as separated droplets or films in the GDL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H., Tang, Y., Wang, Z., Shi, Z., Wu, S., Song, D., Zhang, J., Fatih, K., Zhang, J., Wang, H., Liu, Z., Abouatallah, R., and Mazza, A., A Review of Water Flooding Issues in the Proton Exchange Membrane Fuel Cell, Journal of Power Sources, 2008, vol. 178, pp. 103–117.

    Article  CAS  Google Scholar 

  2. Bazylak, A., Liquid Water Visualization in PEM Fuel Cells: A Review, International Journal of Hydrogen Energy, 2009, vol. 34, pp. 3845–3857.

    Article  CAS  Google Scholar 

  3. Anderson, R., Zhang, L., Ding, Y., Blanco, M., Bi, X., and Wilkinson, D.P., A Critical Review of Two-Phase Flow in Gas Flow Channels of Proton Exchange Membrane Fuel Cells, Journal of Power Sources, 2010, vol. 195, pp. 4531–4553.

    Article  CAS  Google Scholar 

  4. Lenormand, R., Numerical Models and Experiments on Immiscible Displacements in Porous Media, Journal of Fluid Mechanics, 1988, vol. 189, pp. 165–118.

    Article  CAS  Google Scholar 

  5. Nam, J.H. and Kaviany, M., Effective Diffusivity and Water-Saturation Distribution in Single- and Two-Layer PEMFC Diffusion Medium, International Journal of Heat and Mass Transfer, 2003, vol. 46, pp. 4595–4611.

    Article  CAS  Google Scholar 

  6. Litster, S., Sinton, D., and Djilali, N., Ex Situ Visualization of Liquid Water Transport in PEM Fuel Cell Gas Diffusion Layers, Journal of Power Sources, 2006, vol. 154, pp. 95–105.

    Article  CAS  Google Scholar 

  7. Bazylak, A., Sinton, D., Liu, Z.S., and Djilali, N., Effect of Compression on Liquid Water Transport and Microstructure of PEMFC Gas Diffusion Layers, Journal of Power Sources, 2007, vol. 163, pp. 784–792.

    Article  CAS  Google Scholar 

  8. Bazylak, A., Sinton, D., and Djilali, N., Dynamic Water Transport and Droplet Emergence in PEMFC Gas Diffusion Layers, Journal of Power Sources, 2008, vol. 176, pp. 240–246.

    Article  CAS  Google Scholar 

  9. Gao, B., Steenhuis, T.S., Zevi, Y., Parlange, J.Y., Carter, R.N., and Trabold, T.A., Visualization of Unstable Water Flow in a Fuel Cell Gas Diffusion Layer, Journal of Power Sources, 2009, vol. 190, pp. 493–498.

    Article  CAS  Google Scholar 

  10. Pasaogullari, U. and Wang, C.Y., Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Ceils, Journal of the Electrochemical Society, 2004, vol. 151, pp. A399–A406.

    Article  CAS  Google Scholar 

  11. Manke, I., Hartnig, C., Grünerbel, M., Lehnert, W., Kardjilov, N., Haibel, A., Hilger, A., Banhart, J., and Riesemeier, H., Investigation of Water Evolution and Transport in Fuel Cells with High Resolution Synchrotron X-Ray Radiography, Applied Physics Letters, 2007, vol. 2007, p. 174105.

    Article  Google Scholar 

  12. Adam, Z.W. and John, N., Coupled Thermal and Water Management in Polymer Electrolyte Fuel Cells, Journal of the Electrochemical Society, 2006, vol. 153, pp. A2205–A2214.

    Article  Google Scholar 

  13. Soowhan, K. and Mench, M.M., Investigation of Temperature-Driven Water Transport in Polymer Electrolyte Fuel Cell: Phase-Change-Induced Flow, Journal of The Electrochemical Society, 2009, vol. 156, pp. B353–B362.

    Article  Google Scholar 

  14. Turhan, A., Kim, S., Hatzell, M., and Mench, M.M., Impact of Channel Wall Hydrophobicity on Through-Plane Water Distribution and Flooding Behavior in a Polymer Electrolyte Fuel Cell, Eleclrochimica Acta, 2009, vol. 55, pp. 2734–2745.

    Article  Google Scholar 

  15. Voltkovich, Yu.M., Sosenkin, V.E., Nikol’skaya, N.F., and Kulova, T.L., Porous Structure and Hydrophilic-Hydrophobic Properties of Gas Diffusion Layers of the Electrodes in Proton-Exchange Membrane Fuel Cells, Russian Journal of Electrochemistry, 2008, vol. 44, pp. 278–285.

    Article  Google Scholar 

  16. Volfkovich, Yu.M., Sosenkin, V.E., and Bagotsky, V.S., Structural and Wetting Properties of Fuel Cell Components, Journal of Power Sources, 2010, vol. 195, pp. 5429–5441.

    Article  CAS  Google Scholar 

  17. Chen, S.Y. and Doolen, G.D., Lattice Boltzmann Methode for Fluid Flows, Annual Review of Fluid Mechanics, 1998, vol. 30, pp. 329–364.

    Article  Google Scholar 

  18. Park, J., Matsubara, M., and Li, X., Application of Lattice Boltzmann Method to a Micro-Scale Flow Simulation in the Porous Electrode of a PEM Fuel Cell, Journal of Power Sources, 2007, vol. 173, pp. 404–414.

    Article  CAS  Google Scholar 

  19. Hao, L. and Cheng, P., Lattice Boltzmann Simulations of Anisotropic Permeabilities in Carbon Paper Gas Diffusion Layers, Journal of Power Sources, 2009, vol. 186, pp. 104–114.

    Article  CAS  Google Scholar 

  20. Park, J. and Li, X., Multi-Phase Micro-Scale Flow Simulation in the Electrodes of a PEM Fuel Cell by Lattice Boltzmann Method, Journal of Power Sources, 2008, vol. 178, pp. 248–257.

    Article  CAS  Google Scholar 

  21. Niu, X.D., Munekata, T., Hyodo, S.A., and Suga, K., An Investigation of Water-Gas Transport Processes in the Gas-Diffusion-Layer of a PEM Fuel Cell by a Multiphase Multiple-Relaxation-Time Lattice Boltzmann Model, Journal of Power Sources, 2007, vol. 172, pp. 542–552.

    Article  CAS  Google Scholar 

  22. Puneet, K., Sinha, P., Mukherjee, P., and Wang, C.Y., Impact of GDL Structure and Wettability on Water Management in Polymer Electrolyte Fuel Cells, J. Mater. Chem., 2007, vol. 17, pp. 3089–3103.

    Article  Google Scholar 

  23. Mukherjee, P.P., Wang, C.Y., and Kang, Q., Mesoscopic Modeling of Two-Phase Behavior and Flooding Phenomena in Polymer Electrolyte Fuel Cells, Electrochimica Acta, 2009, vol. 54, pp. 6861–6875.

    Article  CAS  Google Scholar 

  24. Hao, L. and Cheng, P., Lattice Boltzmann Simulations of Water Transport in Gas Diffusion Layer of a Polymer Electrolyte Membrane Fuel Cell, Journal of Power Sources, 2010, vol. 195, pp. 3870–3881.

    Article  CAS  Google Scholar 

  25. Bhatnagar, P.L., Gross, E.P., and Krook, M., A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Physical Review, 1954, vol. 94, p. 511.

    Article  CAS  Google Scholar 

  26. Dawson, S.P., Chen, S., and Doolen, G.D., Lattice Boltzmann Computations for Reaction-Diffusion Equations, Journal of Chemical Physics, 1993, vol. 98, pp. 1514–1523.

    Article  CAS  Google Scholar 

  27. Sullivan, S.P., Sani, F.M., Johns, M.L., and Gladden, L.F., Simulation of Packed Bed Reactors Using Lattice Boltzmann Methods, Chemical Engineering Science, 2005, vol. 60, pp. 3405–3418.

    Article  CAS  Google Scholar 

  28. Shan, X. and Chen, H., Lattice Boltzmann Model for Simulating Flows with Multiple Phases and Components, Physical Review E, 1993, vol. 47, pp. 1815–1819.

    Article  Google Scholar 

  29. Shan, X. and Doolen, G., Multicomponent Lattice-Boltzmann Model with Interparticle Interaction, Journal of Statistical Physics, 1995, vol. 81, pp. 379–393.

    Article  Google Scholar 

  30. Martys, N.S. and Chen, H., Simulation of Multicomponent Fluids in Complex Three-Dimensional Geometries by the Lattice Boltzmann Method, Physical Review E, 1996, vol. 53, pp. 743–750.

    Article  CAS  Google Scholar 

  31. Gostick, J.T., Fowler, M.W., Pritzker, M.D., Ioannidis, M.A., and Behra, L.M., In-Plane and Through-Plane Gas Permeability of Carbon Fiber Electrode Backing Layers, Journal of Power Sources, 2006, vol. 162, pp. 228–238.

    Article  CAS  Google Scholar 

  32. Pharoah, J.G., Karan, K., and Sun, W., On Effective Transport Coefficients in PEM Fuel Cell Electrodes; Anisotropy of the Porous Transport Layers, Journal of Power Sources, 2006, vol. 161, pp. 214–224.

    Article  CAS  Google Scholar 

  33. Huang, H., Thorne, D.T., Schaap, M.G., and Sukop, M.C., Proposed Approximation for Contact Angles in Shan-and-Chen-Type Multicomponent Multiphase Lattice Boltzmann Models, Physical Review E, 2007, vol. 76, p. 066701.

    Article  Google Scholar 

  34. Dullien, F., Porous Media: Fluid Transport and Pore Structure, San Diego: Academic Press, 1992.

    Google Scholar 

  35. Theodorakakos, A., Ous, T., Gavaises, M., Nouri, J.M., Nikolopoulos, N., and Yanagihara, H., Dynamics of Water Droplets Detached from Porous Surfaces of Relevance to PEM Fuel Cells, Journal of Colloid and Interface Science, 2006, vol. 300, pp. 673–687.

    Article  CAS  Google Scholar 

  36. Zhu, X., Sui, P.C., and Djilali, N., Dynamic Behaviour of Liquid Water Emerging from a GDL Pore into a PEMFC Gas Flow Channel, Journal of Power Sources, 2007, vol. 172, pp. 287–295.

    Article  CAS  Google Scholar 

  37. Zhu, X., Sui, P.C., and Djilali, N., Three-Dimensional Numerical Simulations of Water Droplet Dynamics in a PEMFC Gas Channel, Journal of Power Sources, 2008, vol. 181, pp. 101–115.

    Article  CAS  Google Scholar 

  38. Le, A.D. and Zhou, B., A Generalized Numerical Model for Liquid Water in a Proton Exchange Membrane Fuel Cell with Interdigitated Design, Journal of Power Sources, 2009, vol. 193, pp. 665–683.

    Article  CAS  Google Scholar 

  39. Zhu, X., Liao, Q., Sui, P.C., and Djilali, N., Numerical Investigation of Water Droplet Dynamics in a Low-Temperature Fuel Cell Microchannel: Effect of Channel Geometry, Journal of Power Sources, 2010, vol. 195, pp. 801–812.

    Article  CAS  Google Scholar 

  40. Ding, Y., Bi, H.T., and Wilkinson, D.P., Three-Dimensional Numerical Simulation of Water Droplet Emerging from a Gas Diffusion Layer Surface in Micro-Channels, Journal of Power Sources, 2010, vol. 195, pp. 7278–7288.

    Article  CAS  Google Scholar 

  41. Le, A.D., Zhou, B., Shiu, H.-R., Lee, C.-I., and Chang, W.-C., Numerical Simulation and Experimental Validation of Liquid Water Behaviors in a Proton Exchange Membrane Fuel Cell Cathode with Serpentine Channels, Journal of Power Sources, 2010, vol. 195, pp. 7302–7315.

    Article  CAS  Google Scholar 

  42. Roshandel, R., Farhanieh, B., and Saievar-Iranizad, E., The Effects of Porosity Distribution Variation on PEM Fuel Cell Performance, Renewable Energy, 2005, vol. 30, pp. 1557–1572.

    Article  CAS  Google Scholar 

  43. Gostick, J.T., Fowler, M.W., Ioannidis, M.A., Pritzker, M.D., Volfkovich, Yu.M., and Sakars, A., Capillary Pressure and Hydrophilic Porosity in Gas Diffusion Layers for Polymer Electrolyte Fuel Cells, Journal of Power Sources, 2006, vol. 156, pp. 375–387.

    Article  CAS  Google Scholar 

  44. Shimpalee, S., Beuscher, U., and Van Zee, J.W., Analysis of GDL Flooding Effects on PEMFC Performance, Electrochimica Acta, 2007, vol. 52, pp. 6748–6754.

    Article  CAS  Google Scholar 

  45. Tüber, K., Pócza, D., and Hebling, C., Visualization of Water Buildup in the Cathode of a Transparent PEM Fuel Cell, Journal of Power Sources, 2003, vol. 124, pp. 403–414.

    Article  Google Scholar 

  46. Park, G.G., Sohn, Y.J., Yang, T.H., Yoon, Y.G., Lee, W.Y., and Kim, C.S., Effect of PTFE Contents in Gas Diffusion Media on the Performance of PEMFC, Journal of Power Sources, 2004, vol. 131, pp. 182–187.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Quan Tao.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 7, pp. 786–800.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Luan, HB., He, YL. et al. Numerical investigation of liquid water transport and distribution in porous gas diffusion layer of a proton exchange membrane fuel cell using lattice Boltzmann method. Russ J Electrochem 48, 712–726 (2012). https://doi.org/10.1134/S1023193512070026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512070026

Keywords

Navigation