Skip to main content
Log in

Mass transport in a boundary layer and in an ion exchange membrane: Mechanism of concentration polarization and water dissociation

  • Special Issue of Journal Devoted to the Problems of Mass Transfer in the Electrochemical Systems
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

In an unforced flowing NaCl solution in bulk, gravitational or electro convection supplies ions from bulk toward the membrane surface through a boundary layer. In a boundary layer formed on an anion exchange membrane, the convection converts to migration and diffusion and carries an electric current. In a boundary layer formed on a cation exchange membrane, the convection converts to migration and carry an electric current. In a forced flowing solution in bulk, the boundary layer thickness is reduced and gravitation or electro convection is disappeared. An electric current is carried by diffusion and migration on the anion exchange membrane and by migration on the cation exchange membrane. Ion transport in a boundary layer on the cation exchange membrane immersed in a NaCl solution is more restricted comparing to the phenomenon on the anion exchange membrane. This is due to lower counter-ion mobility in the boundary layer and the restricted water dissociation reaction in the membrane. The water dissociation reaction is generated in an ion exchange membrane and promoted due to the increased forward reaction rate constant. However, the current efficiency for the water dissociation reaction is generally low. The intensity of the water dissociation is more suppressed in the strong acid cation exchange membrane comparing to the phenomenon in the strong base anion exchange membrane due to lower forward reaction rate constant in the cation exchange membrane. In the strong acid cation exchange membrane, the intensity of electric potential is larger than the values in the strong base anion exchange membrane. Accordingly, the stronger repulsive force is developed between ion exchange groups (SO 3 groups) and co-ions (OH ions) in the cation exchange membrane, and the water dissociation reaction is suppressed. In the strong base anion exchange membrane, the repulsive force between ion exchange groups (N+(CH3)3 groups) and co-ions (H+ ions) is relatively low, and the water dissociation reaction is not suppressed. Violent water dissociation is generated in metallic hydroxides precipitated on the desalting surface of the cation exchange membrane. This phenomenon is caused by a catalytic effect of metallic hydroxides. Such violent water dissociation does not occur on the anion exchange membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Peer, A.M., Discus, Communication in the Membrane Phenomena Special Issue, Faraday Sci., 1956, vol. 21, p. 124.

    Google Scholar 

  2. Cowan, D.A. and Brawn, J.H., Effect of Turbulence on Limiting Current in Electrodialysis Cells, Ind. Eng. Chem., 1959, vol. 51, pp. 1445–1448.

    Article  Google Scholar 

  3. Spiegler, K.S., Polarization at Ion Exchange Membrane-Solution Interface, Desalination, 1971, vol. 9, pp. 365–385.

    Article  Google Scholar 

  4. Krol, J.I., Wessling, M., and Strathmann, H., Concentration Polarization with Ion Exchange Membrane: Current-Voltage Curves and Water Dissociation, J. Membr. Sci., 1999, vol. 162, pp. 145–454.

    Article  CAS  Google Scholar 

  5. Valerdi-Prez, R. and Ibannez-Mengual, J.A., Current-Voltage Curves for an Electrodialysis Reversal Pilot Plant: Determination of Limiting Currents, Desalination, 2001, vol. 141, pp. 23–37.

    Article  Google Scholar 

  6. Kitamoto, A. and Takashima, Y., Studies on Electrodialysis, Maximum Attainable Concentration, Limiting Current Density and on Energy Efficiency in Electrodialysis Using Ion-Exchange Membranes, J. Chem. Eng. Jpn., 1968, vol. 32, pp. 74–82.

    CAS  Google Scholar 

  7. Miyoshi, H., Fukumoto, T., and Kataoka, T., AMethod for Estimating the Limiting Current Density in Electrodialysis, Sep. Sci. Technol., 1988, vol. 23, pp. 585–600.

    Article  Google Scholar 

  8. Huang, T.C. and Yu, I.Y., Correlation of Ionic Transfer Rate in Electrodialysis under Limiting Current Density Conditions, J. Membr. Sci., 1988, vol. 35, pp. 193–206.

    Article  CAS  Google Scholar 

  9. Rubinstein, I. and Shtilman, L., Voltage Against Current Curves of Cation-Exchange Membranes, J. Chem. Soc., Faraday Trans. II, 1979, vol. 75, pp. 231–246.

    Article  CAS  Google Scholar 

  10. Rubinstein, I., Mechanism for an Electrodiffusion Instability in Concentration Polarization, J. Chem. Soc., Faraday Trans II, 1981, vol. 77, pp. 1595–1609.

    Article  CAS  Google Scholar 

  11. Frilette, V.J., Electrogravitational Transport at Synthetic Ion Exchange Membrane Surface, J. Phys. Chem., 1957, vol. 61, pp. 168–174.

    Article  CAS  Google Scholar 

  12. Gavish, B. and Lifson, S., Membrane Polarization at High Current Densities, J. Chem. Soc., Faraday Trans. I, 1979, vol. 75, pp. 463–472.

    Article  CAS  Google Scholar 

  13. Zabolotsky, V.I., Nikonenko, V.V., and Pismenskaya, N.D., On the Role of Gravitational Convection in the Transfer Enhancement of Salt Ions in the Course of Dilute Solution Electrodialysis, J. Membr. Sci., 1996, vol. 119, pp. 171–181.

    Article  CAS  Google Scholar 

  14. Rubinstein, I., Staude, E., and Kedem, O., Role of the Membrane Surface in Concentration Polarization at Ion-Exchange Membrane, Desalination, 1988, vol. 69, pp. 101–104.

    Article  CAS  Google Scholar 

  15. Zabolotsky, V.I., Shel’deshov, N.V., and Gnusin, N.P., Dissociation of Water Molecules in System with Ion-Exchange Membranes, Russ. Chem. Rev., 1988, vol. 57, pp. 801–808.

    Article  Google Scholar 

  16. Nikonenko, V.V., Pismenskaya, N.D., Belova, E.I., Sistat, P., Huguet, P., Pourcelly, G., and Larchet, C., Intensive Current Transfer in Membrane System: Modeling, Mechanisms and Application in Electrodialysis, Adv. Colloid Interface Sci., 2010, vol. 160, pp. 101–123.

    Article  CAS  Google Scholar 

  17. Rubinstein, S.M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R.G.H., Mugele, F., and Wessling, M., Direct Observation of a Nonequilibrium Electro-Osmotic Instability, Phys. Rev. Lett., PRL, 2008, vol. 101, p. 236101.

    Article  CAS  Google Scholar 

  18. Yossifon, G. and Chang, H.C., Selection of Nonequilibrium Overlimiting Currents: Universal Depletion Layer Formation Dynamics and Vortex Instability, Phys. Rev. Lett., 2008, vol. 101, p. 254501.

    Article  Google Scholar 

  19. Shaposhnik, V.A., Vasil’eva, V.I., and Grigorchuk, O.V., The Interferometric Investigations of Electromembrane Processes, Adv. Colloid Interface Sci., 2008, vol. 139, pp. 74–82.

    Article  CAS  Google Scholar 

  20. Green, M.E. and Yafuso, M., A Study of the Noise Generated During Ion Transport Across Membranes, J. Phys. Chem., 1968, vol. 72, pp. 4072–4078.

    Article  CAS  Google Scholar 

  21. Krol, J.J., Wessling, M., and Strathmann, H., Chronopotentiometry and Overlimiting Ion Transport through Monomer Ion Exchange Membranes, J. Membr. Sci., 1999, vol. 162, pp. 155–164.

    Article  CAS  Google Scholar 

  22. Lifson, S., Gavish, B., and Reich, S., Flicker Noise of Ion-Exchange Membranes and Turbulent Convection in the Depleted Layer, Biophys. Struct. Mechanism, 1978, vol. 4, pp. 53–65.

    Article  CAS  Google Scholar 

  23. Li, Q., Fang, Y., and Green, M.E., Turbulent Light-Scattering Fluctuation Spectra near a Cation Electrodialysis Membrane, J. Colloid Interface Sci., 1983, vol. 91, pp. 412–417.

    Article  CAS  Google Scholar 

  24. Kressman, T.R.E. and Tye, F.L., The Effect of Current Density on the Transport of Ions through Ion-Selective Membranes, Discuss. Faraday Soc., 1956, vol. 21, pp. 185–192.

    Article  Google Scholar 

  25. Frilette, V.I., Preparation and Characterization of Bipolar Ion-Exchange Membranes, J. Phys. Chem., 1956, vol. 60, pp. 435–439.

    Article  CAS  Google Scholar 

  26. Rosenberg, N.W. and Tirrel, C.E., Limiting Currents in Membrane Cells, Ind. Eng. Chem., 1957, vol. 49, pp. 780–784.

    Article  CAS  Google Scholar 

  27. Rubinstein, I., A Diffusion Model of “Water Splitting” in Electrodialysis, J. Phys. Chem., 1977, vol. 81, pp. 1431–1436.

    Article  CAS  Google Scholar 

  28. Patel, R.D., Lang, K.C., and Miller, I.F., Polarization in Ion-Exchange Membrane Electrodialysis, Ind. Eng. Fundam., 1977, vol. 16, pp. 340–348.

    Article  CAS  Google Scholar 

  29. Wien, M., Uber die abweichungen der electrolyte vom Ohmschen gesetz, Phys. Zeits, 1928, vol. 29, pp. 751–755.

    CAS  Google Scholar 

  30. Onsager, L., Deviation from Ohm’s Law in Weal Electrolyte, J. Chem. Phys., 1934, vol. 2, pp. 599–615.

    Article  CAS  Google Scholar 

  31. Simons, R., Electric Field Effects on Proton Transfer between Ionizable Groups and Water in Ion Exchange Membranes, Electrochim. Acta, 1984, vol. 29, pp. 151–158.

    Article  CAS  Google Scholar 

  32. Simons, R., Water Splitting in Ion Exchange Membranes, Electrochim. Acta, 1985, vol. 30, pp. 275–282.

    Article  CAS  Google Scholar 

  33. Tanaka, Y., Concentration Polarization in Ion-Exchange Membrane Electrodialysis—the Events Arising in a Flowing Solution in a Desalting Cell, J. Membr. Sci., 2003, vol. 216, pp. 149–164.

    Article  CAS  Google Scholar 

  34. Tanaka, Y., Concentration Polarization on Ion-Exchange Membrane Electrodialysis. The Events Arising in an Unforced Flowing Solution in a Desalting Cell, J. Membr. Sci., 2004, vol. 244, pp. 1–16.

    CAS  Google Scholar 

  35. Tanaka, Y., Water Dissociation Reaction Generated in an Ion Exchange Membrane, J. Membr. Sci., 2010, vol. 350, pp. 347–360.

    Article  CAS  Google Scholar 

  36. Tanaka, Y., Acceleration of Water Dissociation Generated in an Ion Exchange Membrane, J. Membr. Sci., 2007, vol. 303, pp. 234–243.

    Article  CAS  Google Scholar 

  37. Takemoto, N., The Concentration Distribution in the Interfacial Layer at Desalting Side in Ion Exchange Membrane Electyrodialysis, J. Chem. Soc. Jpn., 1972, vol. 1972, pp. 2053–2058.

    Google Scholar 

  38. Tanaka, Y., Irreversible Thermodynamics and Overall Mass Transport in Ion-Exchange Membrane Electrodialysis, J. Membr. Sci., 2006, vol. 281, pp. 517–531.

    Article  CAS  Google Scholar 

  39. Cowan, D.A. and Brown, J.H., Effect of Turbulence on Limiting Current in Electro-Dialysis Cells, Ind. Eng. Chem., 1959, vol. 51, pp. 1445–1448.

    Article  Google Scholar 

  40. Nernst, W., Zur kinetik der in losung befindlichen korper, Z. Phys. Chem., 1888, vol. 2, pp. 613–637.

    Google Scholar 

  41. Tanaka, Y., Concentration Polarization and Dissociation of Water in the Ion Exchange Membrane Electrodialysis, J. Electrochem., Jpn., 1974, vol. 42, pp. 450–546.

    CAS  Google Scholar 

  42. Eigen, M., Method for Investigation of Ionic Reaction in Aqueous Solutions with Half-Times as Short as 10−9 s, Application to Neutralization and Hydrolysis Reaction, Discuss. Faraday Soc., 1954, vol. 17, pp. 194–205.

    Article  Google Scholar 

  43. Tanaka, Y., Ion Exchange Membrane: Fundamentals and Application, in Membrane Science and Technology Series, Amsterdam: Elsevier, 2007, vol. 12.

    Google Scholar 

  44. Tanaka, Y., Matsuda, S., Sato, Y., and Seno, M., Concentration Polarization and Dissociation of Water in Ion Exchange Membrane Electrodialysis, III: The Effects of Electrolytes on the Dissociation of Water, J. Electrochem. Jpn., 1982, vol. 50, pp. 667–672.

    CAS  Google Scholar 

  45. Tanaka, Y. and Seno, M., The Concentration Polarization and Dissociation of Water in Ion Exchange Membrane Electrodialysis, V: The Acceleration of Ionic Transport on the Membrane Surface, J. Electrochem., Jpn., 1983, vol. 51, pp. 267–271.

    CAS  Google Scholar 

  46. Timashev, S.F. and Kirganova, E.V., Mechanism of the Electrolytic Decomposition of Water Molecules in Bipolar Ion-Exchange Membranes, Sov. Electrochem., 1982, vol. 17, pp. 366–369.

    Google Scholar 

  47. Mafe, S., Ramirez, P., and Alcaraz, A., Electric Field Assisted Proton Transfer and Water Dissociation at the Junction of a Fixed-Charge Bipolar Membrane, Chem. Phys. Lett., 1998, vol. 294, pp. 406–412.

    Article  CAS  Google Scholar 

  48. Donnan, F.G., The Theory of Membrane Equilibria, Chem. Rev., 1924, vol. 1, pp. 73–90.

    Article  CAS  Google Scholar 

  49. Kolyubin, A.V., Maksimychev, A.V., and Timashev, S.F., The Use of Flicker-Noise Spectroscopy for Studying the Mechanism of the Overlimiting Current in a System with Cation-Exchange Membrane, Russ. J. Chem., 1966, vol. 32, pp. 206–213.

    Google Scholar 

  50. Helfferich, H., Ion Exchange, New York: McGraw-Hill, 1962, p. 86.

    Google Scholar 

  51. Kang, M.S., Choi, Y.J., and Moon, S.H., Effects of Inorganic Substances on Water Splitting in Ion-Exchange Membranes, II: Optimal Contents of Inorganic Substances in Preparing Bipolar Membranes, J. Colloid Interface Sci., 2004, vol. 273, pp. 533–539.

    Article  CAS  Google Scholar 

  52. Oda, Y. and Yawataya, T., Neutrality-Disturbance Phenomenon of Membrane-Solution Systems, Desalination, 1968, vol. 5, pp. 129–138.

    Article  CAS  Google Scholar 

  53. Ganych, V.V., Zabolotskii, V.I., and Shel’deshov, N.V., Electrolytic Dissociation of Water Molecules in Systems Comprising Solutions and MA-40 Anion-Exchange Membranes Modified with Transition Metal Ions, Sov. Electrochem., 1992, vol. 28, pp. 1138–1143 [Elektrokhimiya (Engl. Transl.), 1992, vol. 28, pp. 1390–1396].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinobu Tanaka.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 7, pp. 739–755.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, Y. Mass transport in a boundary layer and in an ion exchange membrane: Mechanism of concentration polarization and water dissociation. Russ J Electrochem 48, 665–681 (2012). https://doi.org/10.1134/S1023193512060122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512060122

Keywords

Navigation