Skip to main content
Log in

Numerical modeling of a four-electrode electrochemical accelerometer based on natural convection: The boussinesq flow model vs. The compressible flow model

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Two-dimensional numerical simulations are conducted to study the feasibility of applying the Boussinesq approximation to the steady-state buoyancy-driven flow in a four-electrode electrochemical accelerometer. Two kinds of electrode layouts along the electrochemical cell, the anode-cathode-cathode-anode (ACCA) and the cathode-anode-anode-cathode (CAAC), are examined. The results from the model based on the Boussinesq approximation are compared to those from the compressible flow model. Though the Boussinesq flow model leads to fairly large quantitative deviations, it is capable of qualitatively estimating the output electric current when the output electric current increases linearly as the applied axial acceleration. A qualitative difference between the two models are found in the centerline density profiles in the electrochemical cell, which can be explained by the compressibility-induced acceleration/deceleration. It is found that the Boussinesq approximation is good enough for the estimation of the electric current at a single electrode while can make large deviations of the cathodic current difference, i.e., the output electric current in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun, Z. and Agafonov, V.M., Electrochim. Acta, 2010, vol. 55, p. 2036.

    Article  CAS  Google Scholar 

  2. Sun, Z. and Agafonov, V.M., Sens. Actuators, Ser. B, 2010, vol. 146, p. 231.

    Article  Google Scholar 

  3. Selman, J.R. and Newman, J., J. Electrochem. Soc., 1971, vol. 118, p. 1070.

    Article  CAS  Google Scholar 

  4. Marshall, G., Mocskos, P., Swinney, H.L., and Huth, J.M., Phys. Rev., Ser. E, 1999, vol. 59, p. 2157.

    Article  CAS  Google Scholar 

  5. Mahidjiba, A., Mamou, M., and Vasseur, P., Int. J. Heat Mass Tran., 2000, vol. 43, p. 1505.

    Article  CAS  Google Scholar 

  6. Ambrosone, L., Physica, Ser. B, 2000, vol. 292, p. 136.

    CAS  Google Scholar 

  7. Grigin, A.P. and Davydov, A.D., J. Electroanal. Chem., 2000, vol. 493, p. 15.

    Article  CAS  Google Scholar 

  8. Mamou, M., Vasseur, P., and Hasnaoui, M., J. Fluid Mech., 2001, vol. 433, p. 209.

    CAS  Google Scholar 

  9. Bograchev, D.A. and Davydov, A.D., Electrochim. Acta, 2002, vol. 47, p. 3277.

    Article  CAS  Google Scholar 

  10. Grigin, A.P. and Davydov, A.D., Russ. J. Electrochem., 2003, vol. 39, p. 732.

    Article  Google Scholar 

  11. Bograchev, D.A. and Davydov, A.D., Russ. J. Electrochem., 2003, vol. 39, p. 1082.

    Article  Google Scholar 

  12. Volgin, V.M., Volgina, O.V., Bograchev, D.A., and Davydov, A.D., J. Electroanat. Chem., 2003, vol. 546, p. 15.

    Article  CAS  Google Scholar 

  13. Volgin, V.M. and Davydov, A.D., Electrochim. Acta, 2004, vol. 49, p. 365.

    Article  CAS  Google Scholar 

  14. Volgin, V.M. and Davydov, A.D., Russ. J. Electrochem., 2006, vol. 42, p. 567.

    Article  CAS  Google Scholar 

  15. Kawai, S., Nishikawa, K., Fukunaka, Y., and Kida, S., Electrochim. Acta, 2007, vol. 53, p. 257.

    Article  CAS  Google Scholar 

  16. Bund, A., Ispas, A., and Mutschke, G., Sci. Technol. Adv. Mater., 2008, vol. 9, p. 1.

    Article  Google Scholar 

  17. Qian, S., Chen, Z., Wang, J., and Bau, H.H., Int. J. Heat Mass Tran., 2006, vol. 49, p. 3968.

    Article  CAS  Google Scholar 

  18. Mandin, Ph., Fabian, C., and Lincot, D., J. Electroanal. Chem., 2006, vol. 586, p. 276.

    Article  CAS  Google Scholar 

  19. Mandin, Ph., Fabian, C., and Lincot, D., Electrochim. Acta, 2006, vol. 51, p. 4067.

    Article  CAS  Google Scholar 

  20. Mandin, Ph., Cense, J.M., Georges, B., Favre, V., Pauporté, Th., Fukunaka, Y., and Lincot, D., Electrochim. Acta, 2007, vol. 53, p. 233.

    Article  CAS  Google Scholar 

  21. Kundu, P.K. and Cohen, I.M., Fluid Mechanics, 2nd Ed., Academic Press, 2001.

  22. Aseyev, G.G., Electrolytes Transport Phenomena: Methods for Calculation of Multicomponent Solutions and Experimental Data on Viscosities and Diffusion Coefficients, New York: Begell House, Inc., 1998.

    Google Scholar 

  23. Newman, J. and Thomas-Alyea, K.E., Electrochemical Systems, 3rd Ed., Hoboken: John Wiley & Sons, Inc., 2004.

    Google Scholar 

  24. Newson, J.D. and Riddiford, A.C., J. Electrochem. Soc., 1961, vol. 108, p. 699.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyu Sun.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 8, pp. 917–924.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Z., Agafonov, V.M. Numerical modeling of a four-electrode electrochemical accelerometer based on natural convection: The boussinesq flow model vs. The compressible flow model. Russ J Electrochem 48, 835–842 (2012). https://doi.org/10.1134/S1023193512060109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512060109

Keywords

Navigation