Skip to main content
Log in

Numerical simulation of the onset of mass transfer and convection in copper electrolysis subjected to a magnetic field

  • Special Issue of Journal Devoted to the Problems of Mass Transfer in the Electrochemical Systems
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Numerical investigations have been performed in order to simulate the transient behaviour of copper electrolysis in a rectangular cell with vertical electrodes in a galvanostatic regime where the kinetics of the electrodes is controlled by charge-transfer. The transient behaviour observed for a binary electrolyte reproduces the temporal evolution of the concentration distribution measured in recent experimental work. Horizontal magnetic fields that vary linearly between the electrodes create Lorentz forces that either enhance or attenuate natural convection. The different time scales of natural convection and convection driven by the Lorentz force lead to interesting transient effects. The simulations performed for the case of an attenuating Lorentz force explain the dynamics of vertical inhomogeneities of the concentration boundary layer during the initial stages of electrolysis that were previously observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagner, C., J. Electrochem. Soc., 1949, vol. 95, p. 161.

    Article  CAS  Google Scholar 

  2. Tobias, C.W., Eisenberg, M., and Wilke, C.R., J. Electrochem. Soc., 1952, vol. 99, p. 359.

    Article  Google Scholar 

  3. Aogaki, R., Fueki, K., and Mukaibo, T., Denki Kagaku, 1975, vol. 43, p. 504.

    CAS  Google Scholar 

  4. Fahidy, T.Z., Modern Aspects of Electrochemistry, Conway, B.E. et al., Eds., New York: Kluwer/Plenum, 1999, vol. 32, p. 333.

    Google Scholar 

  5. Hinds, G., Coey, J.M.D., and Lyons, M.E.G., Electrochem. Commun., 2001, vol. 3, p. 215.

    Article  CAS  Google Scholar 

  6. Mutschke, G. and Bund, A., Electrochem. Commun., 2008, vol. 10, p. 597.

    Article  CAS  Google Scholar 

  7. Mutschke, G., et al., Electrochim. Acta, 2010, vol. 55, p. 1543.

    Article  CAS  Google Scholar 

  8. Yang, X., et al., J. Electroanal. Chem., 2008, vol. 613, p. 97.

    Article  CAS  Google Scholar 

  9. Volgin, V.M. and Davydov, A.D., Russ. J. Electrochem., 2010, vol. 46, p. 1360.

    Article  CAS  Google Scholar 

  10. Kawai, S., et al., Electrochim. Acta, 2010, vol. 55, p. 3987.

    Article  CAS  Google Scholar 

  11. Bortels, L., van den Bossche, B., and Deconinck, J., J. Electroanalyt. Chem., 1997, vol. 422, p. 161.

    Article  CAS  Google Scholar 

  12. Georgiadou, M., Electrochim. Acta, 2003, vol. 48, p. 4089.

    Article  CAS  Google Scholar 

  13. Bark, F., Electrochim. Acta, 1990, vol. 35, p. 307.

    Article  CAS  Google Scholar 

  14. Chung, M.H., Electrochim. Acta, 2000, vol. 45, p. 3959.

    Article  CAS  Google Scholar 

  15. Yang, X. et al., Electrochim. Acta, 2008, vol. 54, p. 352.

    Article  CAS  Google Scholar 

  16. COMSOL Multiphysics V 3.5a, COMSOL Inc., Burlington, MA 01803, USA, 2009.

  17. Koschichow, D., Diploma Thesis, TU Dresden, April 2010.

  18. Mutschke, G., Koschichow, D., Bund, A., and Fröhlich, J., On Kinetic Aspects of the Start-Up of Copper Electrolysis, 61st Annual Meeting of the International Society of Electrochemistry, Sept. 26–Oct. 1, 2010, Nice, no. S. 10–P.011.

  19. Mühlenhoff, S., Mutschke, G., Koschichow, D., Yang, X., Bund, A., Fröhlich, J., Odenboch, S., and Eckert, K., Electrochimica Acta, 2012, vol. 69, p. 209.

    Article  Google Scholar 

  20. Mattsson, E. and Bockris, J.O.M., Trans. Faraday Soc., 1959, vol. 55, p. 1586.

    Article  Google Scholar 

  21. Newman, J.S. and Thomas-Alyea, K.E., Electrochemical Systems, Hoboken: J. Wiley and Sons, 2004, 3rd ed.

    Google Scholar 

  22. Bard, A.J. and Faulkner, L.R., Electrochemical Methods. Fundamentals and Applications, New York: J. Wiley and Sons, 2001, 2nd ed.

    Google Scholar 

  23. Kim, K. and Fahidy, T.Z., J. Electrochem. Soc., 1995, vol. 142, p. 4196.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mutschke.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 7, pp. 756–765.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koschichow, D., Mutschke, G., Yang, X. et al. Numerical simulation of the onset of mass transfer and convection in copper electrolysis subjected to a magnetic field. Russ J Electrochem 48, 682–691 (2012). https://doi.org/10.1134/S1023193512060067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512060067

Keywords

Navigation