Skip to main content
Log in

Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes

  • Special Issue of Journal Devoted to the Problems of Mass Transfer in the Electrochemical Systems
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

We present porous electrode theory for the general situation of electrolytes containing mixtures of mobile ions of arbitrary valencies and diffusion coefficients (mobilities). We focus on electrodes composed of primary particles that are porous themselves. The predominantly bimodal distribution of pores in the electrode consists of the interparticle or macroporosity outside the particles through which the ions are transported (transport pathways), and the intraparticle or micropores inside the particles, where electrostatic double layers (EDLs) are formed. Both types of pores are filled with electrolyte (solvent plus ions). For the micropores we make use of a novel modified-Donnan (mD) approach valid for strongly overlapped double layers. The mD-model extends the standard Donnan approach in two ways: (1) by including a Stern layer in between the electrical charge and the ions in the micropores, and (2) by including a chemical attraction energy for the ions to go from the macropores into the micropores. This is the first paper where the mD-model is used to model ion transport and electrochemical reactions in a porous electrode. Furthermore we investigate the influence of the charge transfer kinetics on the chemical charge in the electrode, i.e., a contribution to the electrode charge of an origin different from that stemming from the Faradaic reaction itself, e.g. originating from carboxylic acid surface groups as found in activated carbon electrodes. We show that the chemical charge depends on the current via a shift in local pH, i.e. “current-induced charge regulation.” We present results of an example calculation where a divalent cation is reduced to a monovalent ion which electro-diffuses out of the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman, J. and Tobias, C.W., J. Electrochem. Soc., 1962, vol. 109, p. 1183.

    Article  CAS  Google Scholar 

  2. Grens, E.A. and Tobias, C.W., Ber. Bunsengesellsch. Phys. Chem., 1964, vol. 68, p. 236.

    CAS  Google Scholar 

  3. De Levie, R., Electrochimica Acta, 1963, vol. 8, p. 751.

    Article  Google Scholar 

  4. Alkire, R.C., Grens, E.A., and Tobias, C.W., J. Electrochem. Soc., 1969, vol. 116, p. 1328.

    Article  CAS  Google Scholar 

  5. Johnson, A.M. and Newman, J., J. Electrochem. Soc., 1971, vol. 118, p. 510.

    Article  CAS  Google Scholar 

  6. Alkire, R.C. and Place, B., J. Electrochem. Soc., 1971, vol. 118, p. 1687.

    Article  Google Scholar 

  7. Gurevich, I.G. and Bagotzky, V.S., Electrochim. Acta, 1964, vol. 9, p. 1151.

    Article  Google Scholar 

  8. Gurevich, I.G. and Bagotzky, V.S., Electrochim. Acta, 1967, vol. 12, p. 593.

    Article  CAS  Google Scholar 

  9. Newman, J. and Tiedemann, W., AIChE J., 1975, vol. 21, p. 25.

    Article  CAS  Google Scholar 

  10. Prentice, G., Electrochemical Engineering Principles, Prentice-Hall, 1991.

  11. Presser, V., Heon, M., and Gogotsi, Y., Adv. Funct. Mat., 2011, vol. 21, p. 810.

    Article  CAS  Google Scholar 

  12. Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., and Baumann, Th.F., Energy & Env. Sci., 2011, vol. 4, p. 656.

    Article  CAS  Google Scholar 

  13. Biesheuvel, P.M., Fu, Y., and Bazant, M.Z., Phys. Rev. E, 2011, vol. 83, art.no. 061507.

  14. Verbrugge, M.W. and Liu, P., J. Electrochem. Soc., 2005, vol. 152, p. D79.

    Article  CAS  Google Scholar 

  15. Landstorfer, M., Funken, S., and Jacob, T., PCCP, 2011, vol. 13, p. 12817.

    Article  CAS  Google Scholar 

  16. Bower, A.F., Guduru, P.R., and Sethuraman, V.A., J. Mech. Phys. Solids, 2011, vol. 59, p. 804.

    Article  CAS  Google Scholar 

  17. Franco, A.A., Schott, P., Jallut, C., and Maschke, B., Fuel Cells, 2007, vol. 2, p. 99.

    Article  Google Scholar 

  18. Biesheuvel, P.M., Franco, A.A., and Bazant, M.Z., J. Electrochem. Soc., 2009, vol. 156, p. B225.

    Article  CAS  Google Scholar 

  19. Chan, K. and Eikerling, M., J. Electrochem. Soc., 2011, vol. 158, p. B18.

    Article  CAS  Google Scholar 

  20. Conway, B.E., Electrochemical Supercapacitors, Kluwer, 1999.

  21. Dunn, D. and Newman, J., J. Electrochem. Soc., 2000, vol. 147, p. 820.

    Article  CAS  Google Scholar 

  22. Volkovich, Y.M., and Serdyuk, T.M., Russ. J. Electrochem., 2002, vol. 38, p. 935.

    Article  Google Scholar 

  23. Eikerling, M., Kornyshev, A.A., and Lust, E., J. Electrochem. Soc., 2005, vol. 152, p. E24.

    Article  CAS  Google Scholar 

  24. Griffiths, S.K. and Nilson, R.H., J. Electrochem. Soc., 2010, vol. 157, p. A469.

    Article  CAS  Google Scholar 

  25. Robinson, D.B., Max Wu, C.-A., and Jacobs, B.W., J. Electrochem. Soc., 2010, vol. 157, p. A912.

    Article  CAS  Google Scholar 

  26. Feng, G., Qiao, R., Huang, J., Sumpter, B.G., and Meunier, V., ACS Nano, 2010, vol. 4, p. 2382.

    Article  CAS  Google Scholar 

  27. Murphy, G.W. and Caudle, D.D., Electrochimica Acta, 1967, vol. 12, p. 1655.

    Article  CAS  Google Scholar 

  28. Oren, Y. and Soffer, A., J. Appl Electrochem., 1983, vol. 13, p. 473.

    Article  CAS  Google Scholar 

  29. Farmer, J.C., Fix, D.V., Mack, G.V., Pekala, R.W., and Poco, J.F., J. Appl. Electrochem., 1996, vol. 26, p. 1007.

    Article  CAS  Google Scholar 

  30. Spiegler, K.S. and El-Sayed, Y.M., Desalination, 2001, vol. 134, p. 109.

    Article  CAS  Google Scholar 

  31. Gabelich, C.J., Tran, T.D., and Suffet, I.H., Environm. Sci. Techn., 2002, vol. 36, p. 3010.

    Article  CAS  Google Scholar 

  32. Welgemoed, T.J. and Schutte, C.F., Desalination, 2006, vol. 183, p. 327.

    Article  Google Scholar 

  33. Biesheuvel, P.M., J. Colloid Interface Sci., 2009, vol. 332, p. 258.

    Article  CAS  Google Scholar 

  34. Biesheuvel, P.M., van Limpt, B., and van der Wal, A., J. Phys. Chem. C, 2009, vol. 113, p. 5636.

    Article  CAS  Google Scholar 

  35. Noked, M., Avraham, E., Soffer, A., and Aurbach, D., J. Phys. Chem. C, 2009, vol. 113, p. 21319.

    Article  CAS  Google Scholar 

  36. Bouhadana, Y., Avraham, E., Soffer, A., and Aurbach, D., AIChE J., 2010, vol. 56, p. 779.

    CAS  Google Scholar 

  37. Zhao, R., Biesheuvel, P.M., Miedema, H., Bruning, H., and van der Wal, A., J. Phys. Chem. Lett., 2010, vol. 1, p. 205.

    Article  CAS  Google Scholar 

  38. Biesheuvel, P.M. and van der Wal, A., J. Membrane Sci., 2010, vol. 346, p. 256.

    Article  CAS  Google Scholar 

  39. Li, H., Zou, L., Pan, L., and Sun, Z., Env. Sci. & Techn., 2010, vol. 44, p. 8692.

    Article  CAS  Google Scholar 

  40. Biesheuvel, P.M. and Bazant, M.Z., Phys. Rev. E, 2010, vol. 81, art.no. 031502.

  41. Biesheuvel, P.M., Zhao, R., Porada, S., and van der Wal, A., J. Colloid Interface Sci., 2011, vol. 361, p. 239.

    Article  Google Scholar 

  42. Porada, S., Weinstein, L., Dash, R., van der Wal, A., Bryjak, M., Gogotsi, Y., and Biesheuvel, P.M., ACS Materials & Interfaces, 2012, vol. 4, p. 1194.

    Article  CAS  Google Scholar 

  43. Huang, Z.-H., Wang, M., Wang L., and Kang, F., Langmuir, 2012, vol. 28, p. 5079.

    Article  CAS  Google Scholar 

  44. Brogioli, D., Phys. Rev. Lett., 2009, vol. 103, p. 058501.

    Article  Google Scholar 

  45. Sales, B.B., Saakes, M., Post, J.W., Buisman, C.J.N., Biesheuvel, P.M., and Hamelers, H.V.M., Env. Sci. & Techn., 2010, vol. 44, p. 5661.

    Article  CAS  Google Scholar 

  46. Brogioli, D., Zhao, R., and Biesheuvel, P.M., Energy & Env. Science, 2011, vol. 4, p. 772.

    Article  CAS  Google Scholar 

  47. La Mantia, F., Pasta, M., Deshazer, H.D., Logan, B.E., and Cui, Y., NanoLetters, 2011, vol. 11, p. 1810.

    Article  Google Scholar 

  48. Boon, N. and van Roij, R., Mol. Phys., 2011, vol. 109, p. 1229.

    Article  CAS  Google Scholar 

  49. Biesheuvel, P.M., J. Colloid Interface Sci., 2004, vol. 275, p. 514.

    Article  CAS  Google Scholar 

  50. Hou, C.-H., Liang, C., Yiacoumi, S., Dai, S., and Tsouris, C., J. Colloid Interface Sci., 2006, vol. 302, p. 54.

    Article  CAS  Google Scholar 

  51. Huang, J., Sumpter, B.G., and Meunier, V., Chemistry, 2008, vol. 14, p. 6614.

    Article  CAS  Google Scholar 

  52. Birgersson, M. and Karnland, O., Geochim. Cosmochim. Acta, 2009, vol. 73, p. 1908.

    Article  CAS  Google Scholar 

  53. Yaniv, M. and Soffer, A., J. Electrochem. Soc., 1976, vol. 123, p. 506.

    Article  CAS  Google Scholar 

  54. Leroy, P., Revil, A., and Coelho, D., J. Colloid Interface Sci., 2006, vol. 296, p. 248.

    Article  CAS  Google Scholar 

  55. Murad, M.A. and Moyne, C., Comput. Geosci., 2008, vol. 12, p. 47.

    Article  Google Scholar 

  56. Chu, K.T. and Bazant, M.Z., J. Colloid Interface Sci., 2007, vol. 315, p. 319.

    Article  CAS  Google Scholar 

  57. Mani, A. and Bazant, M.Z., Phys Rev. E, 2011, vol. 84, p. 061504.

    Article  Google Scholar 

  58. Biesheuvel, P.M., J. Colloid Interface Sci., 2011, vol. 355, p. 389.

    Article  CAS  Google Scholar 

  59. Torquato, S., Random Heterogeneous Materials, Springer, 2002.

  60. Müller, M. and Kastening, B., J. Electroanal. Chem., 1994, vol. 374, p. 149.

    Article  Google Scholar 

  61. Kastening, B. and Heins, M., Electrochim. Acta, 2005, vol. 50, p. 2487.

    Article  CAS  Google Scholar 

  62. Grahame, D.C., Chem. Rev., 1947, vol. 41, p. 441.

    Article  CAS  Google Scholar 

  63. Bazant, M.Z., Chu, K.T., and Bayly, B.J., SIAM J. Appl. Math., 2005, vol. 65, p. 1463.

    Article  CAS  Google Scholar 

  64. Frumkin, A., Z. Physik. Chem., 1933, vol. 164A, p. 121.

    Google Scholar 

  65. Antropov, L.I., Kinetics of Electrode Processes and Null Points of Metals, New Delhi: Council of Scientific & Industrial Research, 1960.

    Google Scholar 

  66. Parsons, R., Adv. Electrochem. Electrochem. Eng., 1961, vol. 1, p. 1.

    CAS  Google Scholar 

  67. Vetter, K.J., Electrochemical Kinetics, Academic Press, 1967.

  68. Levich, V.G., Physicochemical Hydrodynamics, Prentice-Hall, 1962.

  69. Itskovich, E.M., Kornyshev, A.A., and Vorotyntsev, M.A., Physica Status Solidi A, 1977, vol. 39, p. 229.

    Article  CAS  Google Scholar 

  70. Horvai, G., Electroanalysis, 1991, vol. 3, p. 673.

    Article  CAS  Google Scholar 

  71. Senda, M., Electrochimica Acta, 1995, vol. 40, p. 2993.

    Article  CAS  Google Scholar 

  72. Bonnefont, A., Argoul, F., and Bazant, M.Z., J. Electroanal. Chem., 2001, vol. 500, p. 52.

    Article  CAS  Google Scholar 

  73. Prieve, D.C., Colloids Surfaces A, 2004, vol. 250, p. 67.

    Article  CAS  Google Scholar 

  74. Chu, K.T., Bazant, M.Z., SIAM J. Appl Math., 2005, vol. 65, p. 1485.

    Article  CAS  Google Scholar 

  75. Biesheuvel, P.M., van Soestbergen, M., and Bazant, M.Z., Electrochimica Acta, 2009, vol. 54, p. 4857.

    Article  CAS  Google Scholar 

  76. van Soestbergen, M., Biesheuvel, P.M., and Bazant, M.Z., Phys. Rev. E, 2010, vol. 81, p. 021503.

    Article  Google Scholar 

  77. van Soestbergen, M., Electrochimica Acta, 2010, vol. 55, p. 1848.

    Article  Google Scholar 

  78. Sprague, I.B. and Dutta, P., Num. Heat Transfer, Part A, 2011, vol. 59, p. 1.

    Article  CAS  Google Scholar 

  79. Grahame, D.C., Annu. Rev. Phys. Chem., 1955, vol. 6, p. 337.

    Article  CAS  Google Scholar 

  80. Tanaka, Y., Ion Exchange Membranes, Elsevier, 2007.

  81. Danielsson, C.-O., Dahlkild, A., Velin, A., and Behm, M., Electrochimica Acta, 2009, vol. 54, p. 2983.

    Article  CAS  Google Scholar 

  82. De Lima, S.A., Murad, M.A., Moyne, C., and Stemmelen, D., Acta Geotechn., 2008, vol. 3, p. 153.

    Article  Google Scholar 

  83. Sonin, A.A. and Probstein, R.F., Desalination, 1968, vol. 5, p. 293.

    Article  CAS  Google Scholar 

  84. Probstein, R.F., Physicochemical Hydrodynamics, Butterworths, 1989.

  85. Qiao, R. and Aluru, N.R., J. Chem. Phys., 2003, vol. 118, p. 4692.

    Article  CAS  Google Scholar 

  86. Levi, M.D., Sigalov, S., Salitra, G., Elazari, R., and Aurbach, D., J. Phys. Chem. Lett., 2011, vol. 2, p. 120.

    Article  CAS  Google Scholar 

  87. Schlögl, R., Stofftransport durch Membranen, Band 9 of “Fortschritte der Physikalischen Chemie”, Darmstadt: D. Steinkopff Verlag, 1964.

    Google Scholar 

  88. Oren, Y. and Litan, A., J. Phys. Chem., 1974, vol. 78, p. 1805.

    Article  CAS  Google Scholar 

  89. Jiang, Z. and Stein, D., Langmuir, 2010, vol. 26, p. 8161.

    Article  CAS  Google Scholar 

  90. Jiang, Z. and Stein, D., Phys. Rev. E, 2011, vol. 83, p. 031203.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Biesheuvel.

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 6, pp. 645–658.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biesheuvel, P.M., Fu, Y. & Bazant, M.Z. Electrochemistry and capacitive charging of porous electrodes in asymmetric multicomponent electrolytes. Russ J Electrochem 48, 580–592 (2012). https://doi.org/10.1134/S1023193512060031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512060031

Keywords

Navigation