Skip to main content
Log in

The dissociation rate of water molecules in systems with cation- and anion-exchange membranes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Within the framework of the mathematical model of Nernst-Planck-Poisson, an attempt is undertaken to theoretically describe the electrodiffusion of ions in the system diffusion layer/monopolar ionexchange membrane, which is accompanied by dissociation of water molecules. The formulas for estimating the current density transferred through a monopolar membrane by hydrogen or hydroxyl ions formed in dissociation of water in the space-charge region are derived. The rate constants and other parameters of dissociation of water molecules in the space-charge region of monopolar membranes under conditions of stabilization of the diffusion layer thickness are calculated. Their comparative analysis with the similar characteristics of bipolar membranes is carried out. For the phosphoric-acid heterogeneous membrane MK-41 in which the polarization conditions in the current density range under study are not so severe and the reaction layer is not being depleted as in the bipolar membrane MB-3 (contains the same phosphoric-acid groups), it is shown that only single-charged phosphoric-acid groups are involved in the water dissociation reaction. For MK-41, the calculated constants of the heterolytic reaction of water molecule dissociation are lower than for the heterogeneous membrane MA-40 containing ternary and quaternary amino groups. It is confirmed that the nature of ionogenic groups in membranes is a factor that determines the rate of water dissociation in systems with ion-exchange membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kressman, T.R.E. and Tye, F.L., J. Electrochem. Soc., 1969, vol. 116, no. 1, p. 25.

    Article  CAS  Google Scholar 

  2. Grossman, G., J. Phys. Chem., 1976, vol. 80, no. 14, p. 1616.

    Article  CAS  Google Scholar 

  3. Turner, J.C.R., in Polarization in Electrodialysis. Proc. VI Int. Symp. on Fresh Water from the Sea, Las Palmas, Athens, 1978, vol. 3, p. 125.

    Google Scholar 

  4. Simons, R. and Khanarian, G., J. Membr. Biol., 1978, vol. 38, p. 11.

    Article  CAS  Google Scholar 

  5. Simons, R., Nature, 1979, vol. 280, p. 824.

    Article  CAS  Google Scholar 

  6. Greben’, V.P., Pivovarov, N.Ya., Kovarskii, N.Ya., and Nefedova, G.Z., Zh. Fiz. Khim., 1978, vol. 52, no. 10, p. 2641.

    Google Scholar 

  7. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Elektrokhimiya, 1979, vol. 15, p. 1488.

    CAS  Google Scholar 

  8. Simons, R., Electrochim. Acta, 1984, vol. 29, p. 151.

    Article  CAS  Google Scholar 

  9. Timashev, S.F. and Kirganova, E.V., Elektrokhimiya, 1981, vol. 17, p. 440.

    CAS  Google Scholar 

  10. Tanaka, Y. and Seno, M., Denki Kagaku, 1983, vol. 51, no. 2, p. 267.

    CAS  Google Scholar 

  11. Kharkats, Yu.I., Elektrokhimiya, 1985, vol. 21, p. 974.

    CAS  Google Scholar 

  12. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Usp. Khim., 1988, vol. 57, p. 1403.

    CAS  Google Scholar 

  13. Mauro, A., Biophys. J., 1962, vol. 2, p. 179.

    Article  CAS  Google Scholar 

  14. Kirganova, E.V., Timashev, S.F., and Popkov, Yu.M., Elektrokhimiya, 1983, vol. 19, p. 978.

    Google Scholar 

  15. Umnov, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Russ. J. Electrochem., 1999, vol. 35, p. 871.

    CAS  Google Scholar 

  16. Umnov, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Russ. J. Electrochem., 1999, vol. 35, p. 411.

    CAS  Google Scholar 

  17. Rubinstein, I. and Shtilman, L., J. Chem. Soc., Faraday Trans. 2, 1979, vol. 75, p. 231.

    Article  CAS  Google Scholar 

  18. Urtenov, M.Kh. and Nikonenko, V.V., Elektrokhimiya, 1993, vol. 29, p. 239.

    CAS  Google Scholar 

  19. Urtenov, M.Kh., Kraevye zadachi dlya sistem uravnenii Nernsta-Planka-Puassona (asimptoticheskie razlozheniya i smezhnye voprosy): Monografiya (Boundary Problems for Systems of Equations of Nernst-Planck-Poisson (Asymptotic Expansions and Related Problems: Monograph), Krasnodar: Kuban GU, 1999.

    Google Scholar 

  20. Shaposhnik, V.A., Kastyuchik, A.S., and Kozaderova, O.A., Russ. J. Electrochem., 2008, vol. 44, p. 1073.

    Article  CAS  Google Scholar 

  21. Zabolotskii, V.I., Sharafan, M.V., and Shel’deshov, N.V., Russ. J. Electrochem., 2008, vol. 44, p. 1127.

    Article  CAS  Google Scholar 

  22. Zabolotskii, V.I. and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transfer in Membranes), Moscow: Nauka, 1996.

    Google Scholar 

  23. Zabolotskii, V.I., Sharafan, M.V., Shel’deshov, N.V., and Lovtsov, E.G., Russ. J. Electrochem., 2008, vol. 44, p. 141.

    Article  CAS  Google Scholar 

  24. Zabolotskii, V.I., Shel’deshov, N.V., and Sharafan, M.V., Russ. J. Electrochem., 2006, vol. 42, p. 1345.

    Article  CAS  Google Scholar 

  25. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zabolotskii.

Additional information

Original Russian Text © V.I. Zabolotskii, M.V. Sharafan, N.V. Shel’deshov, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 5, pp. 603–608.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, V.I., Sharafan, M.V. & Shel’deshov, N.V. The dissociation rate of water molecules in systems with cation- and anion-exchange membranes. Russ J Electrochem 48, 550–555 (2012). https://doi.org/10.1134/S1023193512040131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512040131

Keywords

Navigation