Skip to main content
Log in

Intercalation current generation in oxygen- and sulfur-doped talc

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of oxygen and sulfur doping of talc on the parameters of Li+ intercalation current generation was studied. The X-ray structural analysis and impedance spectroscopy data and the shape of the discharge curves indicate that the doping changed the crystal and electronic structure of the material. This deter-mines the difference in the character of the change in the intercalation parameters. Modification of talc with oxygen improved the discharge characteristics of cells with talc-based cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrov, V.S., Kedrinskii, I.V., and Makhonin, E.V., Neorgan. Mater., 1997, vol. 33, p. 1031.

    Google Scholar 

  2. Korovin, N.V., Russ J. Electrochem., 1998, vol. 34, p. 741.

    Google Scholar 

  3. Prisyazhnyi, V.D., Fundamental’nye problemy elektrokhimii. Vestnik Khar’kovskogo natsional’nogo universiteta, 2005, vol. 35, p. 21.

    Google Scholar 

  4. Kedrinskii, I.A., Dmitrenko, V.E., and Grudyanov, I.I., Litievye istochniki toka (Lithium Current Power Sources), Moscow: Energoatomizdat, 1992.

    Google Scholar 

  5. Alcantara, R., Lavela, P., Tirado, J.L., Zhecheva, E., and Stayanova, R., J. Solid State Electrochem., 1999, vol. 3, p. 121.

    CAS  Google Scholar 

  6. McKinnon, W.R., Modern Aspects of Electrochemistry, Eds. McKinnon, W.R. and Haering, R.R., New York: Plenum Press, 1983, vol. 15.

    Google Scholar 

  7. Modern Battery Technology, Ed. Tuck, C.D.S.N., New York: Ellis Horwood, 1991.

    Google Scholar 

  8. Lomovskii, O.I., Gavrilov, E.F., and Makotchenko, V.G., Izv. Sib. Otd. Akad. Nauk SSSR: Ser. Khim., 1983, no. 2/1, p. 29.

  9. Pereira-Ramos, J.P., Baddour-Hadjean, R., Kumagai, N., and Tanno, K., Electrochem. Acta, 1993, vol. 38, p. 431.

    Article  CAS  Google Scholar 

  10. Grigorchak, I.I., Dokl. Nats. Akad. Nauk Ukrainy, 2002, no. 6, p. 110.

  11. Grigorchak, I.I., Bakhmatyuk, B.P., Kovalyuk, Z.D., Gavrilyuk, S.V., and Shastal, M.M., RF Patent 28186 (2000).

  12. Grigorchak, I.I., Il’nitskii, R.V., Lisovskii, R.P., and Mandzyuk, V.I., Mater. VIII mezhdunar. konf. fiziki i tekhnologii tonkikh plenok, (Proc. of the 8th Int. Conf. on Thin Film Physics and Technology), Ivano-Frankovsk: Plai, 2001, p. 166.

    Google Scholar 

  13. Swierczek, K. and Marzec, J., New Trends in Intercalation Compounds for Energy Storage. Ser. Mathem., Phys. and Chem., Eds. Julien, C., Pereira-Ramos, J.P., and Momchilov, A., Dordrecht, Netherlands: Kluwer Academic, 2002, vol. 61.

    Google Scholar 

  14. Ozhuku, T. and Kodama, T., J. Power Sources, 1985, vol. 14, p. 153.

    Article  Google Scholar 

  15. Wilk, P., Marzec, J., and Molenda, J., New Trends in Intercalation Compounds for Energy Storage. Ser. Mathem., Phys. and Chem., Eds. Julien, C., Pereira-Ramos, J.P., and Momchilov, A., Dordrecht, Netherlands: Kluwer Academic, 2002, vol. 61.

    Google Scholar 

  16. Yilmaz, H., Guler, S., and Guler, C., J. Phys. D: Appl. Phys., 1999, vol. 32, p. 1919.

    Article  Google Scholar 

  17. Titov, A.N., Dolgoshein, A.V., Bdikin, I.K., and Titova, S.G., Fiz. Tverd. Tela, 2000, vol. 42, p. 1567.

    Google Scholar 

  18. Chernysh, I.P., Karpov, I.I., Prikhod’ko, G.P., and Shai, V.M., Fiziko-khimicheskie svoistva grafita i ego soedinenii (Physicochemical Properties of Graphite and Its Compounds), Kiev: Naukova Dumka, 1990.

    Google Scholar 

  19. Nagelberg, A.S. and Worrell, W.L., J. Solid State Chem., 1981, vol. 38, p. 321.

    Article  CAS  Google Scholar 

  20. Efimov, A.I., Belorukova, L.P., Vasil’kova, I.V., and Chechev, V.P., Svoistva neorganicheskikh soedinenii (Properties of Inorganic Compounds), Leningrad: Khimiya, 1983.

    Google Scholar 

  21. Stoinov, Z.B., Grafov, B.M., Savvova-Stoinova, B.S., and Elkin, V.V., Elektrokhimicheskii impedans (Electrochemical Impedance), Moscow: Nauka, 1991.

    Google Scholar 

  22. Barsukov, E. and MacDonald, J.R., Impedance Spectroscopy. Theory, Experiment, and Applications, New York: Wiley, 2005.

    Book  Google Scholar 

  23. Meyers, J.P., Doyle, M., Darling, R.M., and Newman, J., J. Electrochem. Soc., 2000, vol. 147, p. 2930.

    Article  CAS  Google Scholar 

  24. Narayanan, S.R., Shen, D.H., Surampudi, S., Attia, A.I., and Halpert, G., J. Electrochem. Soc., 1993, vol. 140, p. 1854.

    Article  CAS  Google Scholar 

  25. Korovin, N.V., Russ. J. Electrochem., 1999, vol. 35, p. 738.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Budzulyak.

Additional information

Original Russian Text © A.Yu. Pidluzhna, I.I. Grigorchak, M.V. Nikipanchuk, B.K. Ostafiychuk, I.M. Budzulyak, M.M. Mitsov, L.S. Yablon’, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 5, pp. 598–602.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pidluzhna, A.Y., Grigorchak, I.I., Nikipanchuk, M.V. et al. Intercalation current generation in oxygen- and sulfur-doped talc. Russ J Electrochem 48, 545–549 (2012). https://doi.org/10.1134/S1023193512040118

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512040118

Keywords

Navigation