Skip to main content
Log in

Organic electronics—Silicon device design without semiconductor band theory

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Before the invention of the transistor in the 1940s, semiconductors were used as detectors in radios in a device called a “cat’s whisker”. At that time their operation was completely mysterious. Only after the introduction of semiconductor band theory did it become clear that the “cat’s whisker” is a primitive example of a metal-semiconductor Schottky diode. Today organic materials are being investigated for their electronic properties. Such materials are especially attractive for lightweight, flexible, and low-cost solar cells and light emitting devices, as well as transistors and electrophotographic photoreceptors. Yet, even after 40 years of work and a large database, the physics and chemistry that determines the electronic properties of organic materials are not well understood. Practicing organic electronics is like attempting to do silicon device design without semiconductor band theory. It is the purpose of this paper to briefly summarize what is known about the electronic properties of organic materials from charge transport data. It will be shown that our understanding of the charge transport mechanism and the electronic properties of organic materials is at a rudimentary phase which is a limiting factor in applying these materials to practical devices, very similar to the “cat’s whisker” phase of inorganic semiconductor research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cat’s-whisker detector from Wikipedia, August 2010.

  2. Chellappan Vijila, Almantas Pivrikas, Huang Chun, Chen Zhikuan, Ronald Osterbacka, and Chua Soo Jin, Org. Elect., 2007, vol. 8, p. 8.

    Article  CAS  Google Scholar 

  3. Hertel, D., Bässler, H., Scherf, U., and Horhold, H.H., J. Chem. Phys., 1999, vol. 110, p. 9214.

    Article  CAS  Google Scholar 

  4. Im, C., Bässler, H., Rosr, H., and Horhold, H.H., J. Chem. Phys., 2000, vol. 113, p. 3802.

    Article  CAS  Google Scholar 

  5. Abokowitz, M.A., Facci, J.S., Limburg, W.W., and Yanus, J.F., Phys. Rev., Ser. B, 1992, vol. 46, p. 6705.

    Article  Google Scholar 

  6. Young, R., J. Chem. Phys., 1995, vol. 103, p. 6749.

    Article  CAS  Google Scholar 

  7. Borsenberger, P.M. and Weiss, D.S., Organic Photoreceptors for Xerography, N.Y.: Marcel Dekker, 1998.

    Google Scholar 

  8. Dolezalek, F.K., Photoconductivity and Related Phenomena, Mort, J. and Pai, D.M., Eds., N.Y.: Elsevier, 1976, p. 71.

    Google Scholar 

  9. Schein, L.B. and Tyutnev, A., J. Phys. Chem., Ser. C, 2008, vol. 112, p. 7295.

    Article  CAS  Google Scholar 

  10. Weiss, D.S. and Abkowitz, M., Chem. Rev., 2010, vol. 110, p. 479.

    Article  CAS  Google Scholar 

  11. Hoppe, H. and Niyazi Seerdar Sariciftci, J. Mater. Res., 2004, vol. 19, p. 1924.

    Article  CAS  Google Scholar 

  12. Gunes, Serap, Neugebauer, Helmut, and Niyazi Serdar Sariciftci, Chem. Rev., 2007, vol. 107, p. 1324.

    Article  Google Scholar 

  13. Segura, J., Martin, N., and Guldi, D., Chem. Soc. Rev., 2005, vol. 34, p. 31.

    Article  CAS  Google Scholar 

  14. Bredas, Jean-Lucm, Norton, J.E., Cornil, J., and Coropceanu, V., Accts. Chem. Res., 2009, vol. 42, p. 1691.

    Article  CAS  Google Scholar 

  15. Emin, D., Adv. Phys., 1975, vol. 24, p. 305.

    Article  Google Scholar 

  16. Schein, L.B., Glatz, D., and Scott, J.C., Phys. Rev. Lett., 1990, vol. 65, p. 472.

    Article  CAS  Google Scholar 

  17. Bässler, H., Phys. Stat. Sol., Ser. b, 1993, vol. 175, p. 15.

    Article  Google Scholar 

  18. Borsenberger, P.M. and Schein, L.B., J. Phys. Chem., 1994, vol. 98, p. 233.

    Article  CAS  Google Scholar 

  19. Schein, L.B., Tyutnev, A., and Weiss, D.S., Chem. Phys., 2009, vol. 365, p. 101.

    Article  CAS  Google Scholar 

  20. Borsenberger, P.M., Gruenbaum, W.T., Kaeding, J.E., and Magin, E.H., Phys. Status Solidi, Ser. b, 1995, vol. 191, p. 171.

    Article  CAS  Google Scholar 

  21. Young, R.H., Philos. Mag., Ser. B, 1995, vol. 72, p. 435.

    Article  CAS  Google Scholar 

  22. Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., and Vannikov, A.V., Phys. Rev. Lett., 1998, vol. 81, p. 4472.

    Article  CAS  Google Scholar 

  23. Bredas, Jean-Luc, Coropceanu, V., and Salman, Seyhan, Private Communications.

  24. Schein, L.B., Saenko, V., Pozhidaev, E.D., Tyutnev, A., and Weiss, D.S., J. Phys. Chem., Ser. C, 2009, vol. 113, p. 1067.

    Article  CAS  Google Scholar 

  25. Schein, L.B., Peled, A., and Glatz, D., J. Appl. Phys., 1989, vol. 66, p. 686.

    Article  CAS  Google Scholar 

  26. Gill, W.C., J. Appl. Phys., 1972, vol. 43, p. 5033.

    Article  Google Scholar 

  27. Peled, A. and Schein, L.B., Chem. Phys. Lett., 1988, vol. 153, p. 422.

    Article  CAS  Google Scholar 

  28. Borsenberger, P.M., J. Appl. Phys., 1990, vol. 68, p. 5682.

    Article  CAS  Google Scholar 

  29. Young, R.H., Phys. Rev. Lett., 1994, vol. 72, p. 3888.

    Article  Google Scholar 

  30. Schein, L.B., Philos. Mag., Ser. B, 1992, vol. 65, p. 795.

    Article  CAS  Google Scholar 

  31. Dunlap, D.H., Parris, P.E., and Kenkre, V.M., Phys. Rev. Lett., 1996, vol. 77, p. 542.

    Article  CAS  Google Scholar 

  32. Dunlap, H., Kenkre, V.M., and Parris, P.E., J. Imaging Sci. Technol., 1999, vol. 43, p. 437.

    CAS  Google Scholar 

  33. Parris, P.E., Dunlap, D.H., and Kenkre, V.M., Phys. Stat. Solidi, Ser. b, 2000, vol. 218, p. 47.

    Article  CAS  Google Scholar 

  34. Novikov, S.V. and Vannikov, A.V., J. Phys. Chem., Ser. C, 2009, vol. 113, p. 2532.

    Article  CAS  Google Scholar 

  35. Dunlap, D.H., Schein, L.B., Tyutnev, A., Saenko, V., Pozhidaev, E.D., Parris, P.E., and Weiss, D.S., J. Phys. Chem., Ser. C, 2010, vol. 114, p. 9076.

    Article  CAS  Google Scholar 

  36. Rudenko, A.I. and Arhipov, V.I., Philosoph. Magazine, Ser. B, 1982, vol. 45, p. 177.

    CAS  Google Scholar 

  37. Pfister, G. and Scher, H., Adv. Phys., 1978, vol. 27, p. 747.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Elektrokhimiya, 2012, Vol. 48, No. 3, pp. 309–319.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schein, L.B. Organic electronics—Silicon device design without semiconductor band theory. Russ J Electrochem 48, 281–290 (2012). https://doi.org/10.1134/S1023193512030135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512030135

Keywords

Navigation