Skip to main content
Log in

The mechanism of electroreduction of nitrate ions on a hybrid electrode nanodispersed copper-MK-40 membrane

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Based on a MK-40 sulfocation-exchange membrane, a hybride electrode material containing nanodispersed copper is prepared. The methods of scanning electron microscopy and X-ray diffraction (XRD) analysis reveal the formation of copper agglomerates measuring 250–470 nm and consisting of individual particles of 20–30 nm. The procedure of multistage chemical deposition of copper into the ion-exchange carrier makes it possible to obtain a continuous cluster of metal particles which determines the electron conducting properties of the resulting hybrid material. The electrochemical activity of the nanocomposite electrode is studied in the reaction of nitrate ion electroreduction. Nanodispersed copper deposited into the membrane is shown to intensify the electroreduction of nitrate ions by a factor of 1.5–2 as compared with a compact copper electrode. The electroreduction of nitrate ions on compact copper is shown to involve 6 electrons, whereas the electroreduction on the nanocomposite involves 8 electrons. The electroreduction products of nitrate ions are identified by the IR spectroscopy method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sergeev, G.B., Zh. Ross. Khim. O-va im. D.I. Mendeleeva, 2002, vol. 46, p. 22.

    CAS  Google Scholar 

  2. Fedushchak, T.A., Sizova, N.V., and Velichkina, L.M., Russ. J. Phys. Chem. A, 2009, vol. 83, p. 1363.

    Article  CAS  Google Scholar 

  3. Tsakova, V., Borissov, D., Ranguelov, B., Stromberg, Ch., and Schultze, J.W., Electrochim. Acta, 2001, vol. 46, p. 4213.

    Article  CAS  Google Scholar 

  4. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Electrode Materials), Moscow: Nauka, 1984.

    Google Scholar 

  5. Gudko, O.E., Lastovina, T.A., Smirnova, N.V., and Guterman, V.E., Nanotechnologies in Russia, 2009, vol. 4, p. 309.

    Article  Google Scholar 

  6. Kravchenko, T.A., Polyanskii, L.N., Kalinichev, A.I., and Konev, D.V., Nanokompozity metall-ionoobmennik (Nanocomposites Metal-Ion-exchanger), Moscow: Nauka, 2009.

    Google Scholar 

  7. Dima, G.E., de Vooys, A.C.A., and Koper, M.T.M., J. Electroanal. Chem., 2003, vol. 554–555, p. 15.

    Google Scholar 

  8. Pak, V.N., Solomatina, O.Yu., Burkat, T.M., and Tikhomirova, I.Yu., Russ. J. Appl. Chem., 2004, vol. 77, p. 15.

    Article  CAS  Google Scholar 

  9. Iveronova, V.I. and Revkevich, G.P., Teoriya rasseyaniya rentgenovskikh luchei (Theory of X-Ray Scattering), Moscow: MGU, 1972.

    Google Scholar 

  10. Shevchenko, G.V. and Ponomarenko, A.T., Usp. Khim., 1983, vol. 52, p. 1336.

    CAS  Google Scholar 

  11. Vysotskii, V.V., Roldugin, V.I., and Pryamova, T.D., Kolloidn. Zh., 1993, vol. 55, p. 30.

    Google Scholar 

  12. Vysotskii, V.V., Pryamova, T.D., Roldugin, V.I., and Shamurina, M.V., Kolloidn. Zh., 1995, vol. 57, p. 649.

    Google Scholar 

  13. Kravchenko, T.A., Chaika, M.Yu., Bulavina, E.V., Glotov, A.V., and Yaroslavtsev, A.B., Dokl. Phys. Chem., 2010, vol. 433, p. 111.

    Article  CAS  Google Scholar 

  14. Novikova, S.A. and Yaroslavtsev, A.B., Sorbtsion. Khromatograf. Protsessy, 2008, vol. 8, p. 887.

    Google Scholar 

  15. Novikova, S.A., Yurkov, G.Yu., and Yaroslavtsev, A.B., Mendeleev Commun., 2010, vol. 20, p. 89.

    Article  CAS  Google Scholar 

  16. Badea, G., Electrochim. Acta, 2009, vol. 54, p. 996.

    Article  CAS  Google Scholar 

  17. Reyter, D., Belanger, D., and Roue, L., Electrochim. Acta, 2008, vol. 53, p. 5977.

    Article  CAS  Google Scholar 

  18. Chebotareva, N. and Nyokong, T., J. Appl. Electrochem., 1997, vol. 27, p. 975.

    Article  CAS  Google Scholar 

  19. Gorokhovskaya, V.I. and Gorokhovskii, V.M., Praktikum po e lektrokhimicheskim metodam analiza (Practical Course of Electrochemical Analytical Methods), Moscow: Vysshaya shkola, 1983.

    Google Scholar 

  20. Cunha, M.C.P., M., De Souza, J.P.I., and Nart, F.C, Langmuir, 2000, vol. 16, p. 771.

    Article  Google Scholar 

  21. Uvarov, N.F. and Boldyrev, V.V., Usp. Khim., 2001, vol. 70, p. 307.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Kravchenko.

Additional information

Original Russian Text © M.Yu. Chaika, E.V. Bulavina, A.S. Solyanikova, T.A. Kravchenko, P.V. Seredin, 2012, published in Elektrokhimiya, 2012, Vol. 48, No. 2, pp. 234–239.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaika, M.Y., Bulavina, E.V., Solyanikova, A.S. et al. The mechanism of electroreduction of nitrate ions on a hybrid electrode nanodispersed copper-MK-40 membrane. Russ J Electrochem 48, 212–217 (2012). https://doi.org/10.1134/S1023193512020024

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193512020024

Key words

Navigation