Skip to main content
Log in

Role of molecular oxygen and its active forms in generation of electrochemiluminescence

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A short review is dedicated to the role of molecular oxygen and its active forms in generation of electrochemiluminescence (ECL). It is shown at the example of such widely used luminogens as luminol, lucigenin, acridine esters, acridane, and indoles that the role of O2 and its active forms, such as hydrogen peroxide, superoxide and hydroperoxide radicals in generation of ECL by organic compounds is largely reduced to oxidation of the initial luminogen or intermediates of its partial electrochemical preoxidation/prereduction. Such intermediates are most often particles in the doublet state (radical-cation, radical-anion, or free radicals) that form unstable emitter precursors of peroxide (dioxetanone) type under interaction with O2, hydrogen peroxide, or other active oxygen forms. It is also shown that the product of secondary transformations of active oxygen forms is singlet oxygen that may also be a radiation source as a result of cooperative transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reshetnyak, O.V. and Błażejowski, J., in Elektrokhimiya organicheskikh soedinenii v nachale XXI veka (Electrochemistry of Organic Compounds at the Beginning of the XXIst Century), Gul’tyai, V.P, Krivenko, A.G, and Tomilov, A.P,, Eds., Moscow: Kompaniya Sputnik+, 2008, pp. 6–55.

    Google Scholar 

  2. Richter, M.M., Chem. Educator, 2002, vol. 7, p. 195.

    Article  CAS  Google Scholar 

  3. Haapakka, K.E. and Kankare, J.J., Anal. Chim. Acta, 1982, vol. 138, p. 263.

    Article  CAS  Google Scholar 

  4. Wilson, R., Akhavan-Tafti, H., De Silva, R., and Schaap, A.P., Electroanalysis, 2001, vol. 13, p. 1083.

    Article  CAS  Google Scholar 

  5. Merenyi, G., Lind, J., and Eriksen, T.E., J. Am. Chem. Soc., 1986, vol. 108, p. 7716.

    Article  CAS  Google Scholar 

  6. Merenyi, G., Lind, J., and Eriksen, T.E., J. Biolumin. Chemilumin., 1990, vol. 5, p. 53.

    Article  CAS  Google Scholar 

  7. Easton, P.M., Simmonds, A.C., Rakishev, A., Egorov, A.M., and Candeias, L.R., J. Am. Chem. Soc., 1996, vol. 118, p. 6619.

    Article  CAS  Google Scholar 

  8. Wilson, R., Akhavan-Tafti, H., DeSilva, R., and Schaap, A.P., Chem. Commun., 2000, p. 2067.

  9. Mirkhalaf, F. and Wilson, R., Electroanalysis, 2005, vol. 17, no. 19, p. 1761.

    Article  CAS  Google Scholar 

  10. Wilson, R., Akhavan-Tafti, H., DeSilva, R., and Schaap, A.P., Anal. Chem., 2001, vol. 73, p. 763.

    Article  CAS  Google Scholar 

  11. McCapra, F., Pure Appl. Chem., 1970, vol. 24, p. 611.

    Article  CAS  Google Scholar 

  12. McCapra, F., Acc. Chem. Res., 1976, vol. 9, p. 201.

    Article  CAS  Google Scholar 

  13. Townshend, A., Analyst, 1990, vol. 115, p. 495.

    Article  CAS  Google Scholar 

  14. Yang, M.-L., Liu, C.-Z., Hu, X.-H., He, P.-G., and Fang, Y.-Z., Anal. Chim. Acta, 2002, vol. 461, p. 141.

    Article  CAS  Google Scholar 

  15. Legg, K.D. and Hercules, D.M., J. Am. Chem. Soc., 1969, vol. 91, p. 1902.

    Article  CAS  Google Scholar 

  16. Haapakka, K.E. and Kankare, J.J., Anal. Chim. Acta, 1981, vol. 130, p. 415.

    Article  CAS  Google Scholar 

  17. Chen, G.-N., Zhang, L., Yang, Z.-C., Duan, J.-P., Chen, H.-Q., and Hibbert, D.B., Talanta, 2000, vol. 50, p. 1275.

    Article  CAS  Google Scholar 

  18. Sun, Y.-G., Cui, H., and Lin, X.-Q., J. Lumin., 2001, vol. 92, p. 205.

    Article  CAS  Google Scholar 

  19. Maskiewiez, R., Sogah, D., and Bruice, T.C., J. Am. Chem. Soc., 1979, vol. 101, p. 5347.

    Article  Google Scholar 

  20. Okajima, T. and Ohsaka, T., J. Electroanal. Chem., 2002, vol. 534, p. 181.

    Article  CAS  Google Scholar 

  21. Okajima, T. and Ohsaka, T., Luminescence, 2003, vol. 18, p. 49.

    Article  CAS  Google Scholar 

  22. Balcerowicz, K. and Slawinski, J., Acta Phys. Pol., A, 1971, vol. 19, p. 237.

    Google Scholar 

  23. Qi, H.-L. and Zhang, C.-X., Luminescence, 2004, vol. 19, p. 21.

    Article  Google Scholar 

  24. Su, Y.-Y., Wang, J.-A., and Chen, G.-N., Talanta, 2006, vol. 68, p. 883.

    Article  CAS  Google Scholar 

  25. Yu, H.-X., Cui, H., and Guo, J.-Z., Luminescence, 2004, vol. 19, p. 212.

    Article  CAS  Google Scholar 

  26. Cui, H., Xu, Y., and Zhang, Z.-F., Anal. Chem., 2004, vol. 76, p. 4002.

    Article  CAS  Google Scholar 

  27. Wang, C.-M. and Cui, H., Luminescence, 2007, vol. 22, p. 35.

    Article  CAS  Google Scholar 

  28. Okajima, T. and Ohsaka, T., Electrochim. Acta, 2002, vol. 47, p. 1561.

    Article  CAS  Google Scholar 

  29. Okajima, T. and Ohsaka, T., J. Electroanal. Chem., 2002, vol. 523, p. 34.

    Article  CAS  Google Scholar 

  30. Andrieux, C.P., Hapiot, P., and Saveant, J.-M., J. Am. Chem. Soc., 1987, vol. 109, p. 3768.

    Article  CAS  Google Scholar 

  31. Che, Y., Tsushima, M., Matsumoto, F., et al., J. Phys. Chem., 1996, vol. 100, p. 20134.

    Article  CAS  Google Scholar 

  32. Berlin, Ad.A. and Kislenko, V.N., Okislenie organicheskikh soedinenii (Oxidation of Organic Compounds), L’viv: Svit, 1991.

    Google Scholar 

  33. Organic Electrochemistry: an Introduction and a Guide, Lund, H. and Baizer, M.M., Eds., New York: Marcel Dekker, 1991, 3rd ed.

    Google Scholar 

  34. Reshetnyak O., Koval’chuk, E., Il’chyna, R., and Kovalyshyn, L., Visnyk L’viv Univ., Ser. Khim, 2002, vol. 41, p. 262.

    Google Scholar 

  35. Bykh, A.I., Vasil’ev, R.F., and Rozhitskii, N.N., Itogi Nauki Tekh., Ser.: Rad. Khim., Fotokhim., Moscow: VINITI, 1979, vol. 2.

    Google Scholar 

  36. Reshetnyak, O.V., Koval’chuk, E.P., Skurski, P., Rak, J., and Błazejowski, J., J. Lumin., 2003, vol. 105, p. 27.

    Article  CAS  Google Scholar 

  37. Reshetnyak, O., Koval’chuk, E., and Błażejowski, J., Visnyk L’viv Univ., Ser. Khim., 2009, vol. 50, p. 231.

    Google Scholar 

  38. Reshetnyak, O.V. and Koval’chuk, E.P., Electrochim. Acta, 1998, vol. 43, p. 465.

    Article  Google Scholar 

  39. Koval’chuk, E.P., Reshetnyak, O.V., Chernyak, A.O., and Kovalyshyn, Ya.S., Electrochim. Acta, 1999, vol. 44, p. 4079.

    Article  Google Scholar 

  40. Khan, A.U. and Kasha, M., J. Am. Chem. Soc., 1966, vol. 88, no. 7, p. 1574.

    Article  CAS  Google Scholar 

  41. Adam, W., Kazakov, D.V., and Kazakov, V.P., Chem. Rev., 2005, vol. 105, p. 3371.

    Article  CAS  Google Scholar 

  42. Wróblewska, A., Reshetnyak, O.V., Koval’chuk, E.P., Pasichnyuk, R.I., and Błażejowski, J., J. Electroanal. Chem., 2005, vol. 580, p. 41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Reshetnyak.

Additional information

Original Russian Text © O.V. Reshetnyak, E.P. Koval’chuk, J. Błażejowski, 2011, published in Elektrokhimiya, 2011, Vol. 47, No. 10, pp. 1191–1199.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reshetnyak, O.V., Koval’chuk, E.P. & Błażejowski, J. Role of molecular oxygen and its active forms in generation of electrochemiluminescence. Russ J Electrochem 47, 1111–1118 (2011). https://doi.org/10.1134/S102319351110017X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351110017X

Keywords

Navigation