Computer simulation of the negative electrode operation in lithium ion battery: Galvanostatics, the problem of calculating working parameters

Abstract

The work of the negative electrode (anode) of a lithium-ion battery operating in the galvanostatic discharge mode is simulated. Attention was focused on formulating the complete mathematical description of processes occurring on the anode. The most serious complication is associated with taking into account the diffusion limitation arising at the extraction of lithium atoms from grains of the active substance (intercalating agent). The analytical relationship is found between the average lithium concentration in the intercalator grain and the lithium concentration on the contact surface between the intercalator grains and the electrolyte grains. Algorithms of computer-assisted calculations are developed that allow the anode characteristics to be found. The following anode working parameters are determined: the active layer thickness, the complete discharge time, the specific electric capacity, and the final potential at the active layer/interelectrode space boundary. Calculations of the working parameters are carried out in the following two versions: for anodes with a thin active layer (imitation of processes occurring in an individual intercalator grain) and for anodes with the active layer of the optimal thickness. The procedure of selecting the reasonable discharge current, i.e., its maximum value at which virtually all lithium atoms can be removed from the active intercalator grain, is shown.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Doyle, M., Fuller, T.F., and Newman, J., J. Electrochem. Soc., 1993, vol. 140, p. 1526.

    Article  CAS  Google Scholar 

  2. 2.

    Fuller, T.F., Doyle, M., and Newman, J., J. Electrochem. Soc., 1994, vol. 141.

  3. 3.

    Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  4. 4.

    Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Elektrokhimiya, 2011, vol. 47, p. 65 [Russ. J. Electrochem. (Engl. Transl.), 2011, vol. 47, p. 59].

    Google Scholar 

  5. 5.

    Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Elektrokhimiya, 2011, vol. 47, p. 310 [Russ. J. Electrochem. (Engl. Transl.), 2011, vol. 47, p. 288].

    Google Scholar 

  6. 6.

    Chirkov, Yu.G., Elektrokhimiya, 2011, vol. 35, p. 1452 [Russ. J. Electrochem. (Engl. Transl.), 1999, vol. 35, p. 1281].

    Google Scholar 

  7. 7.

    Chirkov, Yu.G., Rostokin, V.Zh., and Skundin, A.M., Elektrokhimiya, 2011, vol. 47, p. 77 [Russ. J. Electrochem. (Engl. Transl.), 2011, vol. 47, p. 71].

    Google Scholar 

  8. 8.

    Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., and Tarascon, J.-M., J. Electrochem. Soc., 1996, vol. 143, p. 1890.

    Article  Google Scholar 

  9. 9.

    Fuller, T.F., Doyle, M., and Newman, J., J. Electrochem. Soc., 1994, vol. 141, p. 1.

    Article  CAS  Google Scholar 

  10. 10.

    Botte, G.G., Johnson, B.A., and White, R.E., J. Electrochem. Soc., 1999, vol. 146, p. 914.

    Article  CAS  Google Scholar 

  11. 11.

    Arora, P., Doyle, M., and White, R.E., J. Electrochem. Soc., 1996, vol. 143, p. 3543.

    Google Scholar 

  12. 12.

    Wang, C.Y., Gu, W.B., and Liaw, B.Y., J. Electrochem. Soc., 1998, vol. 145, p. 3407.

    Article  CAS  Google Scholar 

  13. 13.

    Zhang, Q. and White, R.E., J. Power Sources, 2008, vol. 179, p. 793.

    Article  CAS  Google Scholar 

  14. 14.

    Edvards, Ch.G., Differentsial’nye uravneniya i kraevye zadachi: modelirovanie i vychislenie s pomoshch’yu Mathematica, Maple and MATLAB (Differential Equations and Boundary Problems: Simulations and Computations using Mathematica, Maple, and MATLAB), Moscow: Vil’yams, 2008.

    Google Scholar 

  15. 15.

    Alad’ev, V.Z., Programmirovanie i razrabotka prilozhenii v MAPLE. Grodno: GrGU (Programming and Development of MAPLE Applications; Grodno, GrGU), Tallinn: Mezhdunar. Akad. Noosfery, 2007.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, A.M. Skundin, 2011, published in Elektrokhimiya, 2011, Vol. 47, No. 7, pp. 820–832.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. & Skundin, A.M. Computer simulation of the negative electrode operation in lithium ion battery: Galvanostatics, the problem of calculating working parameters. Russ J Electrochem 47, 768–780 (2011). https://doi.org/10.1134/S1023193511070032

Download citation

Keywords

  • lithium-ion rechargeable battery
  • negative electrode (anode)
  • galvanostatic discharge mode
  • computer stimulations
  • model of isometric cubic grains of two types
  • anode with a thin active layer
  • anode with the active layer of the optimal thickness
  • active intercalator grains
  • problem of diffusion limitations