Skip to main content
Log in

Effect of crystallographic structure on electrical and mechanical characteristics of Sm2O3-Doped CeO2 films

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Electrical conductivity, dielectric permittivity and mechanical hardness of the polycrystalline CeO2 + xSm2O3 (x = 0, 10.9–15.9 mol %) films prepared by Electron Beam Physical Vapour Deposition (EB-PVD) and Ionic Beam Assisted Deposition, (IBAD), techniques were investigated in dependence on their structure and microstructure influenced by the deposition conditions, namely composition, deposition temperature and Ar+ ion bombardment. The electrical conductivity of doped ceria prepared without Ar+ ion bombardment and investigated by the impedance spectroscopy, IS, was found to be predominantly ionic one under the oxidizing atmosphere/low-temperature conditions and the higher amounts of Sm2O3 (>10 mol %) used. The bulk conductivity as a part of total measured conductivity was a subject of interest because the grain boundary conductivity was found to be ∼3 orders of magnitude lower than the corresponding bulk conductivity. Ar+ ion bombardment acted as a reducer (Ce4+ → Ce3+) resulting in the development of electronic conductivity. Dielectric permittivity determined from the bulk parallel capacitance measured at room temperature and the frequency of 1 MHz, similarly as the mechanical hardness measured by indentation (classical Vickers and Depth Sensing Indentation-DSI) techniques were also found to be dependent on the deposition conditions. The approximative value of hardness for the investigated films deposited on the substrate was estimated using a simple phenomenological model described by the power function HV = HV 0 + aP b and compared with the so-called apparent hardness (substrate + investigated film) determined by the classical Vickers formula. Results obtained are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eguchi, K., Setoguchi, T., Inoue, T., and Arai, H., Solid State Ionics, 1992, vol. 52, p. 165.

    Article  CAS  Google Scholar 

  2. Hartmanová, M., Gmucová, K., Jergel, M., Thurzo, I., Kundracik, F., and Brunel, M., Thin Solid Films, 1999, vol. 345, p. 330.

    Article  Google Scholar 

  3. Wilk, G.D., Wallace, R.M., and Anthony, J.M.A., J. Appl. Phys., 2001, vol. 89, p. 5243.

    Article  CAS  Google Scholar 

  4. Yasuda, K., Suenaga, S., Inagaki, H., Goto, Y., and Takeda, H., J. Mater. Sci., 2000, vol. 35, p. 317.

    Article  CAS  Google Scholar 

  5. Koch, T. and Ziemann, P., Thin Solid Films, 1997, vol. 303, p. 122.

    Article  CAS  Google Scholar 

  6. Hartmanova, M., Jergel, M., Mansilla, C., Holgado, J.P., Zemek, J., Jurek, K., and Kundracik, F., Appl. Surf. Sci., 2009, vol. 255, p. 9085.

    Article  CAS  Google Scholar 

  7. Mansilla, C., Holgado, J.P., Espinos, J.P., Gonzales-Elipe, A.R., and Yubero, F., Surf Coat. Technol., 2007, vol. 202, p. 1256.

    Article  CAS  Google Scholar 

  8. Urusovskaya, A.A., Sovremennaya Kristallografyia, Moscow: Izd. Nauka, 1981, vol. 4, p. 47.

    Google Scholar 

  9. Oliver, W.C. and McHargue, C.J., Thin Solid Films, 1988, vol. 161, p. 117.

    Article  Google Scholar 

  10. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 1992, vol. 7, p. 1564.

    Article  CAS  Google Scholar 

  11. Laursen, T.A. and Simo, J.C., J. Mater. Res., 1992, vol. 7, p. 618.

    Article  CAS  Google Scholar 

  12. Bolshakov, A. and Pharr, G.M., J. Mater. Res., 1998, vol. 13, p. 1049.

    Article  CAS  Google Scholar 

  13. Shannon, R.D., Acta Crystallogr. A, 1976, vol. 32, p. 751.

    Article  Google Scholar 

  14. Badwal, S.P.S. and Ciacchi, F.T., Ionics, 2000, vol. 6, p. 1.

    Article  CAS  Google Scholar 

  15. Tuller, H.L. and Nowick, A.S., J. Phys. Chem. Solids, 1977, vol. 38, p. 859.

    Article  CAS  Google Scholar 

  16. Naik, K. and Tien, T.Y., J. Phys. Chem. Solids, 1978, vol. 39, p. 311.

    Article  CAS  Google Scholar 

  17. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North-Holland Publishing Company, 1964.

    Google Scholar 

  18. Glushkova, V.B., Hanic, F., and Sazonova, L.V., Ceramurgia Int., 1978, vol. 4, p. 176.

    Article  CAS  Google Scholar 

  19. Hanic, F., Hartmanová, M., and Krcho, S., Solid State Ionics, 1988, vol. 31, p. 167.

    Article  CAS  Google Scholar 

  20. Hartmanová, M., Hanic, F., Putyera, K., Tunega, D., and Glushkova, V.B., Mater. Chem. Phys., 1993, vol. 34, p. 175.

    Article  Google Scholar 

  21. Hartmanová, M., Lomonova, E.E., Kubel, F., Schneider, J., Buršíková, V., Jergel, M., Navrátil, V., Kundracik, F., J. Mater. Sci., 2009, vol. 44, p. 234.

    Article  Google Scholar 

  22. Balazs, G.B. and Glass, R.S., Solid State Ionics, 1995, vol. 76, p. 155.

    Article  Google Scholar 

  23. Hong, S.J., Mehta, K., and Virkar, A.V., J. Electrochem. Soc., 1998, vol. 145, p. 638.

    Article  CAS  Google Scholar 

  24. Badwal, S.P.S. and Drennan, J., Solid Sate Ionics, 1998, vol. 28, p. 1451.

    Article  Google Scholar 

  25. Guo, X., Sigle, W., and Maier, J., J. Amer. Ceram. Soc., 2003, vol. 83, p. 77.

    Article  Google Scholar 

  26. Guo, X. and Maier, J., J. Electrochem. Soc., 2001, vol. 148, p. E121.

    Article  CAS  Google Scholar 

  27. Shon, I.-J., Park, H.-K., Nam, K.-S., and Lee, K.-T., Journal of Ceramic Processing Research, 2008, vol. 9, p. 325.

    Google Scholar 

  28. Butler, V., Catlow, C.R.A., Fender, B.E.F., and Harding, J.H., Solid State Ionics, 1983, vol. 8, p. 109.

    Article  CAS  Google Scholar 

  29. Inaba, H. and Tagawa, H., Solid State Ionics, 1996, vol. 83, p. 1.

    Article  CAS  Google Scholar 

  30. Omar, S., Wachsman, E.D., and Nino, J.C., Solid State Ionics, 2008, vol. 178, p. 1890.

    Article  CAS  Google Scholar 

  31. Omar, S., Wachsman, E.D., Jones, J.L., and Nino, J.C., J. Amer. Ceram. Soc., 2009, vol. 92, p. 2674.

    Article  CAS  Google Scholar 

  32. Petrov, I., Barna, P.B., Hultman, L., and Greene, J.E., J. Vac. Sci. Techol. A, 2003, vol. 21, p. S117.

    Article  CAS  Google Scholar 

  33. Miyahara, Y., J. Appl. Phys., 1992, vol. 71, p. 2309.

    Article  CAS  Google Scholar 

  34. Hartmanová, M., Gmucová, K., and Thurzo, I., Solid State Ionics, 2000, vol. 130, p. 105.

    Article  Google Scholar 

  35. Chiodelli, G., Magistris, A., Scagliotti, M., and Parmigiani, F., J. Mater. Sci., 1988, vol. 23, p. 1159.

    Article  CAS  Google Scholar 

  36. Hench, L.L. and West, J.K., Principles of Electronic Ceramics, Singapore: Willey, 1990, p. 201.

    Google Scholar 

  37. Inoue, T., Yamamoto, Y., Koyma, S., Suzuki, S., and Ueda, Y., Appl. Phys. Lett., 1990, vol. 56, p. 1332.

    Article  CAS  Google Scholar 

  38. Tian, Ch. and Chan, S.-W., Mater. Res. Soc. Symp. Proc., 1996, vol. 411, p. 277.

    Article  CAS  Google Scholar 

  39. Tsai, W.-Ch. and Tseng, T.-Y., J. Mater, Sci.: Mater Electronics, 1997, vol. 8, p. 313.

    Article  CAS  Google Scholar 

  40. Fukuda, H., Miura, M., Sakuma, S., and Nomura, S., Jpn. J. Appl. Phys., 1998, vol. 37, p. 4158.

    Article  CAS  Google Scholar 

  41. Robertson, J., Eur. Phys. J. Appl. Phys., 2004, vol. 20, p. 265.

    Article  Google Scholar 

  42. Alexopoulos, P.S. and O’sullivan, T.C., Annu. Rev. Mater. Sci., 1990, vol. 20, p. 391.

    Article  CAS  Google Scholar 

  43. Jonson, B. and Hogmark, S., Thin Solid Films, 1984, vol. 114, p. 257.

    Article  Google Scholar 

  44. Burnett, P.J. and Rickerby, D.S., Thin Solid Films, 1987, vol. 148, p. 41.

    Article  CAS  Google Scholar 

  45. Bull, S.J. and Rickerby, D.S., Surf. Coat. Technol., 1990, vol. 42, p. 149.

    Article  CAS  Google Scholar 

  46. Chicot, D. and Lesage, J., Thin Solid Films, 1995, vol. 254, p. 123.

    Article  CAS  Google Scholar 

  47. Lesage, J., Pertuz, A., Puchi-Cabrera, E.S., and Chicot, D., Thin Solid Films, 2006, vol. 497, p. 232.

    Article  CAS  Google Scholar 

  48. Rice, R.W., Wu, C.Cm., and Borchelt, F., J. Amer. Ceram. Soc., 1994, vol. 477, p. 2539.

    Article  Google Scholar 

  49. Sameshima, S., Ichikawa, T., Kawaminami, M., and Hirata, Y., Materials Chemistry and Physics, 1999, vol. 61, p. 31.

    Article  CAS  Google Scholar 

  50. Hartmanová, M., Jergel, M., Navrátil, V., Navrátil, K., Gmucová, K., Gandarilla, F.C., Zemek, J., Chromik, Š., and Kundracik, F., Acta Physica Slovaca, 2005, vol. 55, p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hartmanová.

Additional information

Published in Russian in Elektrokhimiya, 2011, Vol. 47, No. 5, pp. 539–551.

After the paper delivered at the 10th Meeting “Fundamental Problems of Solid-State Ionics”, Chernogolovka, 2010.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmanová, M., Navrátil, V., Buršíková, V. et al. Effect of crystallographic structure on electrical and mechanical characteristics of Sm2O3-Doped CeO2 films. Russ J Electrochem 47, 505–516 (2011). https://doi.org/10.1134/S1023193511050041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193511050041

Keywords

Navigation