Skip to main content
Log in

Synthesis of bilayer composite nanomembranes with conductivity asymmetry

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The structure and electrochemical properties of polyethylene terephthalate track membranes modified in acetylene plasma are studied. It is found that polymer deposition on the track membrane surface using acetylene polymerization in plasma results in the case of formation of a semipermeable layer covering pores in formation of a composite nanomembrane featuring asymmetry of conductivity in solutions of electrolytes: a rectifying effect similar to that of a p-n junction in semiconductors. It is shown that the observed effect of conductivity asymmetry is caused by a significant decrease in the diameter of pores in the plasma-deposited polymer layer and a change in the pore geometry, same as existence of an interface between the initial membrane and polymer layer that have a different concentration of carboxyl groups in the surface layer. The impedance spectroscopy method allowed obtaining information on ion transfer in the studied membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brok, T., Membrannaya fil’tratsiya (Membrane Filtration), Moscow: Mir, 1987.

    Google Scholar 

  2. Garbassi, F., Morra, M., and Ochiello, E., Polymer Surface: from Physics to Technology, New York: Wiley, 1994.

    Google Scholar 

  3. Kravets, L.I., Dmitriev, S.N., and Gil’man, A.B., Khim. Vys. Energ., 2009, vol. 43, no. 3, p. 227.

    Google Scholar 

  4. Yasuda, H., Plasma Polymerization, Rolla, Missouri: Academic, 1985.

    Google Scholar 

  5. Kravets, L.I., Gil’man, A.B., and Drachev, A.I., Khim. Vys. Energ., 2005, vol. 39, p. 143.

    Google Scholar 

  6. Bryjak, M., Pozniak, G., Gancarz, I., and Tylus, W., Desalination, 2004, vol. 163, p. 231.

    Article  CAS  Google Scholar 

  7. Bryjak, M., Gancarz, I., and Pozniak, G., Chem. Papers, 2000, vol. 54, p. 496.

    CAS  Google Scholar 

  8. Borner, P.Ju. and Jacobasch, H.J., Proc. Symp. Electrokinetic Phenomena, Dresden, 1985, p. 227.

  9. Flerov, G.N., Vestn. Akad. Nauk SSSR, 1984, no. 4, p. 35.

  10. Kravets, L., Dmitriev, S., Lizunov, N., Satulu, V., Mitu, B., and Dinescu, G., Nucl. Instrum. Methods Phys. Res. B, 2010, vol. 268, no. 5, p. 485.

    Article  CAS  Google Scholar 

  11. Mulder, M., Vvedenie v membrannuyu tekhnologiyu (Introduction into Membrane Technology), Moscow: Mir, 1999.

    Google Scholar 

  12. Stoynov, Z.B., Grafov, B.M., Savova-Stoynova, B.S., and Elkin, V.V., Elektrokhimicheskii impedans (The Electrochemical Impedance), Moscow: Nauka, 1991.

    Google Scholar 

  13. Rabek, J.F., Experimental Methods in Polymer Chemistry, New York: Wiley, 1980.

    Google Scholar 

  14. Bellami, L., Infrakrasnye spektry slozhnykh molekul (Infrared Spectra of Complex Molecules), Moscow: Izd-vo inostr. lit., 1963.

    Google Scholar 

  15. Khokhlov, A.R. and Dormidontova, E.E., Usp. Fiz. Nauk, 1997, vol. 167, p. 113.

    Article  CAS  Google Scholar 

  16. Higa, M. and Kira, A., J. Phys. Chem. B, 1995, vol. 99, p. 5089.

    Article  CAS  Google Scholar 

  17. Ramirez, P., Mafe, S., Manzanares, J.A., and Pellicer, J., J. Electroanal. Chem., 1996, vol. 404, p. 187.

    Article  Google Scholar 

  18. Apel, P.Yu., Korchev, Yu.E., Siwy, Z., Spohr, R., and Yoshida, M., Nucl. Instrum. Methods Phys. Res. B, 2001, vol. 184, p. 337.

    Article  CAS  Google Scholar 

  19. Siwy, Z., Apel, P., Baur, D., Dobrev, D., Korchev, Yu., Neumann, R., Spohr, R., Trautmann, C., and Voss, K., Surf. Sci., 2003, vol. 532–535, p. 1061.

    Article  Google Scholar 

  20. Nikonenko, V.V., Zabolotskii, V.I., and Gnusin, N.P., Elektrokhimiya, 1989, vol. 25, p. 301.

    CAS  Google Scholar 

  21. Rubinstein, I., Zaltzman, B., and Kedem, O., J. Membr. Sci., 1997, vol. 125, p. 17.

    Article  CAS  Google Scholar 

  22. Koval’chuk, V.I., Khim. Tekhnol. Vody, 1993, vol. 15, p. 483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Kravets.

Additional information

Original Russian Text © L.I. Kravets, S.N. Dmitriev, V.A. Altynov, V. Satulu, B. Mitu, G. Dinescu, 2011, published in Elektrokhimiya, 2011, Vol. 47, No. 4, pp. 499–510.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kravets, L.I., Dmitriev, S.N., Altynov, V.A. et al. Synthesis of bilayer composite nanomembranes with conductivity asymmetry. Russ J Electrochem 47, 470–481 (2011). https://doi.org/10.1134/S1023193511040094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193511040094

Keywords

Navigation