Skip to main content
Log in

Cathodic processes in copper(II) solutions containing gluconic acid

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of cathodic processes proceeding in the acidic 0.01 M Cu(II) solutions containing gluconic acid and 0.5 M Na2SO4 as the supporting electrolyte is studied. According to the spectrophotometric data, in the moderately acidic solutions, a monoligand complex of CuL+ predominantly forms. Its concentration stability constant is 102.2 M−1. In the cathodic voltammograms, a well-defined plateau of the limiting current is observed. The height of the plateau obeys the Levich equation. The effective diffusion coefficient decreases from 4.2 × 10−6 to 2.5 × 10−6 cm2/s with increasing complexation degree of the system. An analysis of normalized Tafel plots showed that the exchange current density of Cu2+ + e → Cu+ process decreases with increasing concentration of ligand or with increasing pH value. Thereby, the cathodic chargetransfer coefficient remains constant (0.33 ± 0.02). A comparison of the kinetic data with the results of deposit surface examination points to significant surface activity of the ligand. The gluconate chemisorption can be accompanied by the incorporation of the fragments, which were formed as a result of its destruction, into the electrodeposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawyer, D.T., Chem. Rev., 1964, vol. 64, p. 633.

    Article  CAS  Google Scholar 

  2. Sillen, L.G. and Martell, A.E., Stability Constants of Metal-Ion Complexes. Special Pub. Nos. 17 and 25, London: Chem. Soc., 1964, vol. 1; 1971, vol. 2.

    Google Scholar 

  3. Martell, A.E. and Smith, R.M., Critical Stability Constants, New York: Plenum, 1976, vol. 4.

    Google Scholar 

  4. Alekseev, Yu.E., Garnovskii, A.D., and Zhdanov, Yu.A., Usp. Khim., 1998, vol. 67, p. 723 [Russ. Chem. Rev., (Engl. Transl.), vol. 67, p. 649].

    CAS  Google Scholar 

  5. Vasantha, V.S. and Muralidharan, V.S., Proc. Indian Acad. Sci., 1994, vol. 106, p. 825.

    CAS  Google Scholar 

  6. Abd El Rehim, S.S., Sayyah, S.M., and El Deeb, M.M., Appl. Surf. Sci., 2000, vol. 165, p. 249.

    Article  CAS  Google Scholar 

  7. Abd El Rehim, S.S., Refaey, S.A., Schwitzgebel, G., Taha, F., and Saleh, M.B., J. Appl. Electrochem., 1996, vol. 26, p. 413.

    Google Scholar 

  8. Abd El Rehim, S.S., Mohamed, N.F., Amin, N.H., and Ali, L.I., J. Appl. Electrochem., 1997, vol. 27, p. 135.

    Article  Google Scholar 

  9. Abd El Rehim, S.S., Sayyah, S.M., and El Deeb, M.M., Trans. IMF, 2000, vol. 78, p. 74.

    Google Scholar 

  10. Guaus, E. and Torrent-Burgues, J., J. Electroanal. Chem., 2003, vol. 549, p. 25.

    Article  CAS  Google Scholar 

  11. Subramanian B., Mohan S., Sobha Jayakrishnan, Surf. Coat. Technol., 2006. V. 201. P. 1145.

  12. Cannan, R.K. and Kibric, A., J. Am. Chem. Soc., 1938, vol. 60, p. 2314.

    Article  CAS  Google Scholar 

  13. Pecsok, R.L. and Juvet, R.S. Jr., J. Am. Chem. Soc., 1955, vol. 77, p. 202.

    Article  CAS  Google Scholar 

  14. Pecsok, R.L. and Juvet, R.S. Jr., J. Am. Chem. Soc., 1956, vol. 78, p. 3967.

    Article  CAS  Google Scholar 

  15. Sawyer, D.T. and Bagger, J.B., J. Am. Chem. Soc., 1959, vol. 81, p. 5302.

    Article  CAS  Google Scholar 

  16. Parke, S.A., Birch, G.G., MacDougall, D.B., and Stevens, D.A., Chem. Senses, 1997, vol. 22, p. 53.

    Article  CAS  Google Scholar 

  17. Zubiaur, J., Castano, R., Etxebarria, N., Fernandez, L.A., and Madariaga, J.M., Talanta, 1998, vol. 45, p. 1007.

    Article  CAS  Google Scholar 

  18. Barbe, J.C., de Revel, G., and Bertrand, A., J. Agric. Food Chem., 2002, vol. 50, p. 6408.

    Article  CAS  Google Scholar 

  19. Zhang, Z., Gibson, P., Clark, S.B., Tian, G., Zanonato, P.L., and Rao, L., J. Solution Chem., 2007, vol. 36, p. 1187.

    Article  CAS  Google Scholar 

  20. Escandar, G.M. and Sala, L.F., Can. J. Chem., 1992, vol. 70, p. 2053.

    Article  CAS  Google Scholar 

  21. Blomqvist, K. and Still, E.R., Anal. Chem., 1985, vol. 57, p. 749.

    Article  CAS  Google Scholar 

  22. Rajan, K.S. and Martell, E., J. Inorg. Nucl. Chem., 1967, vol. 29, p. 463.

    Article  CAS  Google Scholar 

  23. Vicedomini, M., J. Coord. Chem., 1983, vol. 12, p. 307.

    Article  CAS  Google Scholar 

  24. Kacena, V. and Matousek, L., Collect. Czech. Chem. Commun., 1953, vol. 18, p. 294.

    CAS  Google Scholar 

  25. Koryta, J., Progress in Polarography, New York: Interscience, 1962, vol. 1, p. 291.

    Google Scholar 

  26. Survila, A.A., Elektrodnye protsessy v sistemakh labil’nykh kompleksov metallov (The Electrode Processes in the Systems of Labile Metal Complexes), Vilnius: Mokslas, 1989.

    Google Scholar 

  27. Uljanionok, J., Jagminiene, A., and Survila, A., Chemija (Vilnius), 2009, vol. 20, p. 89.

    CAS  Google Scholar 

  28. Budene, Yu., Survilene, A., and Survila, A., Elektrokhimiya, 2004, vol. 40, p. 443 [Budiene, J., Surviliene, A., and Survila, A., Russ. J. Electrochem, 2004, vol. 40, p. 394].

    Google Scholar 

  29. Uljanionok, J. and Survila, A., Chemija (Vilnius), 2009, vol. 20, p. 84.

    CAS  Google Scholar 

  30. Akilan, C., Thermodynamic and related studies of aqueous copper(II) sulfate solutions. Ph.D. Dissertation. Australia: Murdoch Univ., 2008.

    Google Scholar 

  31. Davies, C.W., Ion Association, London: Butterworths, 1962.

    Google Scholar 

  32. Butler, J.N., Ionic equilibrium (a mathematical approach), Massachusetts: Reading, 1964.

    Google Scholar 

  33. Gluconic Acid and Derivatives. SIDS Initial Assessment Report for SIAM 18, Paris: France, 20–23 April, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Survila.

Additional information

Original Russian Text © A. Survila, Z. Mockus, S. Kanapeckaite, J. Pileckiene, G. Stalnionis, 2011, published in Elektrokhimiya, 2011, Vol. 47, No. 2, pp. 139–146.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Survila, A., Mockus, Z., Kanapeckaite, S. et al. Cathodic processes in copper(II) solutions containing gluconic acid. Russ J Electrochem 47, 129–135 (2011). https://doi.org/10.1134/S1023193511020169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193511020169

Keywords

Navigation