Skip to main content
Log in

Computer modeling of positive electrode operation in lithium-ion battery: Model of equal-sized grains, percolation calculations

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A computer simulation of the structure of the cathode active material in a lithium-ion battery is performed. The model of equal-sized grains of three types (active grains, grains of electrolyte, and carbon black grains) is studied. Acceptable bulk concentration of active grains g is estimated. It is in the range of zero to 0.3. Dependence of the key parameters of the electrode active material on its composition is determined: specific conductivity of electrolyte and specific surface area on which the electrochemical process occurs. It is shown that the average number of electrochemically active faces of active grains cannot be 100%, as usually assumed in the studies of diffusion processes occurring in an individual active grain. In the range of 0.0 ≤ g ≤ 0.3, the average number of active faces is in the approximate range of 2 ≤ ñ ≤ 3. The final choice of the optimum composition of components for the active material of a lithium-ion battery cathode (and, primarily, choice of the value for parameter g) requires performing an additional complex of computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bagotskii, V.S. and Skundin, A.M., Khimicheskie Istochniki Toka (Chemical Power Sources), Moscow: Energoizdat, 1981.

    Google Scholar 

  2. Doyle, M., Fuller, T.F., and Newman, J., J. Electrochem. Soc., 1993, vol. 140, p. 1526.

    Article  CAS  Google Scholar 

  3. Fuller, T.F., Doyle, M., and Newman, J., J. Electrochem. Soc., 1994, vol. 141, p. 1.

    Article  CAS  Google Scholar 

  4. Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., and Tarascon, J.-M., J. Electrochem. Soc., 1996, vol. 143, p. 1890.

    Article  Google Scholar 

  5. Arora, P., Doyle, M., and White, R.E., J. Electrochem. Soc., 1999, vol. 146, p. 3543.

    Article  CAS  Google Scholar 

  6. Song, L. and Evans, J.W., J. Electrochem. Soc., 2000, vol. 147, p. 2086.

    Article  CAS  Google Scholar 

  7. Gu, W.B. and Wang, C.Y., J. Electrochem. Soc., 2000, vol. 147, p. 2910.

    Article  CAS  Google Scholar 

  8. Srinivasan, V. and Wang, C.Y., J. Electrochem. Soc., 2003, vol. 150, p. A98.

    Article  CAS  Google Scholar 

  9. Doyle, M. and Fuentes, Y., J. Electrochem. Soc., 2003, vol. 150, p. A706.

    Article  CAS  Google Scholar 

  10. Sikha, G., Popov, B.N., and White, R.E., J. Electrochem. Soc., 2004, vol. 151, p. A1104.

    Article  CAS  Google Scholar 

  11. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.T., Makrokinetika protsessov v poristykh sredakh (Macrokinetics of Processes in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  12. Newman, J.S., Electrochemical Systems, New Jersey: Prentice Hall, Englewood Cliffs, 1991.

    Google Scholar 

  13. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozheniya, algoritmy (Percolation: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2001.

    Google Scholar 

  14. Chirkov, Yu.G., Rostokin, V.I., and Skundin, A.M., Elektrokhimiya, 2011, vol. 47, p. 65 [Russ. J. Electrochem. (Engl. Transl.), vol. 47, p. 59].

    Google Scholar 

  15. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2004, vol. 40, p. 1036 [Russ. J. Electrochem. (Engl. Transl.), vol. 40, p. 898].

    Google Scholar 

  16. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2003, vol. 39, p. 694 [Russ. J. Electrochem. (Engl. Transl.), vol. 39, p. 622].

    Google Scholar 

  17. Chirkov, Yu.G., Elektrokhimiya, 1999, vol. 35, p. 1452 [Russ. J. Electrochem. (Engl. Transl.), vol. 35, p. ].

    Google Scholar 

  18. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1437 [Russ. J. Electrochem. (Engl. Transl.), vol. 38, p. 1299].

    Google Scholar 

  19. Korol’, V.I., Visual Basic 6.0 for Application, Moscow: KUDITs-OBRAZ, 2000.

    Google Scholar 

  20. Landsberg, G.S., Optika (Optics), Moscow: Fizmatlit, 2003.

    Google Scholar 

  21. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2006, vol. 42, p. 799 [Russ. J. Electrochem. (Engl. Transl.), vol. 42, p. 715].

    Google Scholar 

  22. Skundin, A.M., Efimov, O.N., and Yarmolenko, O.V., Usp. Khim., 2002, vol. 71, no. 4, p. 378.

    Google Scholar 

  23. Zhang, Q. and White, R.E., J. Power Sources, 2007, vol. 165, p. 880.

    Article  CAS  Google Scholar 

  24. Zhang, Q. and White, R.E., J. Power Sources, 2008, vol. 179, p. 793.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. G. Chirkov.

Additional information

Original Russian Text © Yu.G. Chirkov, V.I. Rostokin, A.M. Skundin, 2011, published in Elektrokhimiya, 2011, Vol. 47, No. 1, pp. 77–89.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. & Skundin, A.M. Computer modeling of positive electrode operation in lithium-ion battery: Model of equal-sized grains, percolation calculations. Russ J Electrochem 47, 71–83 (2011). https://doi.org/10.1134/S102319351101006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351101006X

Keywords

Navigation