Skip to main content
Log in

Effect of gaseous products of overall electrode process on local solution conductivity and efficiency of operation of flow-through porous electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A one-dimensional porous electrode (PE) model and additional consideration of the dependence of the local solution conductivity on its gas saturation was used to study the effect of simultaneous hydrogen evolution on distribution of the potential in PE and the overall rate of the target redox reaction. It was found that this effect depends on the ratio of conductivities of the solid κs and liquid κl phases and direction of solution supply and can be both negative (rear supply at any κs and κl, front supply at κs ≫ κl), and positive (front supply at κs ≤ κl). However, variation of the target reaction rate in all cases for PE with a high specific surface area is low (10–40%). It is shown that in the terms of the model of a homogeneous gas-liquid mixture, a weak effect of gaseous hydrogen is related to the specific form of profiles κl(x) far from the earlier considered ideal (or inverse) liquid-phase conductivity profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (The Physico-Chemical Hydrodynamics), Moscow: Izd. fiz.-mat. Lit, 1959.

    Google Scholar 

  2. Chirkov, Yu.G., Intensifikatsiya elektrokhimicheskikh protsessov. Teoriya gazoobrazovaniya i gazovydeleniya v poristykh elektrodakh (Intensification of Electrochemical Processes. Theory of Gas Formation and Gas Evolution in Porous Electrodes), Moscow: Nauka, 1983.

    Google Scholar 

  3. Koshev, A.N., Varentsov, V.K., and Gleizer, G.N., Elektrokhimiya, 1992, vol. 28, no. 8, p. 1118.

    CAS  Google Scholar 

  4. Zamyatin, A.P. and Bek, R.Yu., Elektrokhimiya, 1984, vol. 20, no. 3, p. 351.

    CAS  Google Scholar 

  5. Ateya, B.G.. and El-Anadouli, B.E., J. Electrochem. Soc., 1991, vol. 138, no. 5, p. 1331.

    Article  CAS  Google Scholar 

  6. El-Shakre, M.E., Saleh, M.M., El-Anadouli, B.E., and Ateya, B.G., J. Electrochem. Soc., 1994, vol. 141, no. 2, p. 441.

    Article  CAS  Google Scholar 

  7. Saleh, M.M., Weidner, J.W., and Ateya, B.G., J. Electrochem. Soc., 1995, vol. 142, no. 12, p. 4113.

    Article  CAS  Google Scholar 

  8. Saleh, M.M., Weidner, J.W., El-Anadouli, B.E., and Ateya, B.G., J. Electrochem. Soc., 1995, vol. 142, no. 12, p. 4122.

    Article  CAS  Google Scholar 

  9. Saleh, M.M., Awad, M.I., Kitamura, F., and Ohsaka, T., Electrochim. Acta, 2006, vol. 51, no. 28, p. 6331.

    Article  CAS  Google Scholar 

  10. Konkin, A.A., Uglerodnye i drugie zharostoikie voloknistye materialy (Carbon and Other Heat-Resistant Fiber Materials), Moscow: Khimiya, 1974.

    Google Scholar 

  11. Bek, R.Yu., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim., 1977, vol. 4, no. 6, p. 11.

    Google Scholar 

  12. Maslii, A.I., Poddubnyi, N.P., and Medvedev, A.Zh., Elektrokhimiya, 2010, vol. 46, p. 21 [Russ. J. Electrochem. (Engl. Transl.), vol. 46, p. 18].

    Google Scholar 

  13. Maslii, A.I. and Poddubnyi, N.P., Elektrokhimiya, 1997, vol. 33, no. 8, p. 906 [Russ. J. Electrochem. (Engl. Transl.), vol. 33, no. 8, p. 834].

    Google Scholar 

  14. Maslii, A.I., Khim. v Interesah Ustoich. Razvit., 2004, vol. 12, no. 3, p. 275.

    CAS  Google Scholar 

  15. Masliy, A.I., Poddubny, N.P., Medvedev, A.Zh., Zherebilov, A.F., and Sukhorukov, D.V., J. Electroanal.Chem, 2008, vol. 623, no. 2, p. 155.

    Article  CAS  Google Scholar 

  16. Masliy, A.I., Poddubny, N.P., and Medvedev, A.Zh., Metal Electrodeposition, Nunez, M., Ed., New York: Nova Sci. Publ., 2005, Ch. 4, p. 99.

    Google Scholar 

  17. Daniel’-Bek, V.S., Zh. Fiz. Khim., 1948, vol. 22, no. 6, p. 697.

    Google Scholar 

  18. Varentsov, V.K, Zherebilov, A.F., and Malei, M.D., Izvestiya SO AN SSSR, Ser. Khim., 1984, vol. 17, no. 6, p. 120.

    Google Scholar 

  19. Gnusin, N.P., Poddubnyi, N.P., and Maslii, A.I., Osnovy teorii rascheta i modelirovaniya electricheskikh polei v electrolitakh (Basic Theory of Calculating and Modelling Electric Fields in Electrolites), Novosibirsk: Nauka, 1972.

    Google Scholar 

  20. Gurevich, I.G., Vol’fkovich, Yu.M., and Bagotzky, V.S., Zhidkostnye Poristye Elektrody (Liquid Porous Electrodes), Minsk: Nauka i Tekhnika, 1974.

    Google Scholar 

  21. Daniel’-Bek, V.S., Elektrokhimiya, 1966, vol. 2, no. 6, p. 672.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Maslii.

Additional information

Original Russian Text © A.I. Maslii, N.P. Poddubny, A.Zh. Medvedev, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 12, pp. 1427–1436.

The paper was prepared for a special issue dedicated to the birth centenary of Ya. M. Kolotyrkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslii, A.I., Poddubny, N.P. & Medvedev, A.Z. Effect of gaseous products of overall electrode process on local solution conductivity and efficiency of operation of flow-through porous electrode. Russ J Electrochem 46, 1335–1344 (2010). https://doi.org/10.1134/S1023193510120013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510120013

Keywords

Navigation