Skip to main content
Log in

Direct borohydride oxidation electrocatalysts based on Ni-Ru/C and Ni-Ru-F/C alloys

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A fluorine-containing bimetallic nickel-ruthenium catalyst on highly disperse carbon black is synthesized based on an organometal nickel complex and a ruthenium cluster in the presence of perfluoroenanthic acid. The resulting catalyst is characterized by the XRD and energy-dispersion analyses and laser mass spectrometry. The overall composition of the catalytic system corresponds to Ni12RuF5. Calculated on the base of XRD data, the particle size is 10.5–12 nm. According to voltammetric data, the specific characteristics of the synthesized catalyst in the reaction of direct oxidation of sodium borohydride at room temperature surpass the characteristics of nickel-ruthenium catalyst described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pecsok, R.L., J. Am. Chem. Soc., 1953, vol. 76, p. 2862.

    Article  Google Scholar 

  2. Amendola, S., Onnerud, P., Kelly, M., Petillo, P., Sharp-Goldman, S., and Binder, M., J. Power Sources, 1999, vol. 84, no. 1, p. 130.

    Article  CAS  Google Scholar 

  3. Mirkin, M.V. and Bard, A.J., Anal. Chem., 1991, vol. 63, p. C532.

    Article  Google Scholar 

  4. Elder, J.P. and Hickling, A., Trans. Faraday Soc., 1962, vol. 58, p. 1852.

    Article  CAS  Google Scholar 

  5. Kubokawa, M., Yamashita, M., and Abe, K., Denki Kagaku, 1968, vol. 36, p. 788.

    CAS  Google Scholar 

  6. Liu, B.H., Li, Z.P., and Suda, S., J. Electrochem. Soc., 2003, vol. 150, no. 3, p. A398.

    Article  CAS  Google Scholar 

  7. Dong, H., Feng, R., Ai, X., Cao, Y., Yang, H., and Cha, C., J. Phys. Chem., 2005, vol. B 109, no. 21, p. 10896.

    Google Scholar 

  8. Kaufman, C.M. and Sen, B., J. Chem. Soc., Dalton Trans., 1985, vol. 2, p. 307.

    Article  Google Scholar 

  9. Sanli, E., Cëelikkan, H., Uysal B.Z., and Aksu M.L., Int. J. Hydrogen Energy, 2006, vol. 31, p. 1920.

    Article  CAS  Google Scholar 

  10. Celikkan H., Sëahin, M., Aksu, M.L., and Veziroǧlu, T.N., Int. J. Hydrogen Energy, 2007, vol. 32, p. 588.

    Article  CAS  Google Scholar 

  11. Sanli, E., Uysal, B.Z., and Aksu, M.L., Int. J. Hydrogen Energy, 2008, vol. 33, no. 8, p. 2097.

    Article  CAS  Google Scholar 

  12. Lam, V.W.S. and Gyenge, E.L., J. Electrochem. Soc., 2008, vol. 155, no. 11, p. B1155.

    Article  CAS  Google Scholar 

  13. Feng, R.X., Dong, H., Yang, Y.D., Ai, X.P., Cao, Y.L., and Yang, H.X., Electrochem. Commun., 2005, vol. 7, p. 449.

    Article  CAS  Google Scholar 

  14. Chatenet, M., Micoud, F., Roche, I., and Chainet, E., Electrochim. Acta, 2006, vol. 51, p. 5459.

    Article  CAS  Google Scholar 

  15. Atwan, M.H., MacDonald, C.L.B., Northwood, D.O., and Gyenge, E.L., J. Power Sources, 2006, vol. 158, p. 36.

    Article  CAS  Google Scholar 

  16. Coowar, F.A., Vitins, G., Mepsted, G.O., Waring, S.C., and Horsfall, J.A., J. Power Sources, 2008, vol. 175, no. 1, p. 317.

    Article  CAS  Google Scholar 

  17. Lee, S.-M., Kim, J.-H., Lee, H.-H., Lee, P.S., and Lee, J.-Y., J. Electrochem. Soc., 2002, vol. 149, no. 5, p. A603.

    Article  CAS  Google Scholar 

  18. Wang, L., Ma, C., Mao, X., Sheng, J., Bai, F., and Tang, F., Electrochem. Commun., 2005, vol. 7, p. 1477.

    Article  CAS  Google Scholar 

  19. Liu, B.H. and Suda, S., J. Alloys Compd., 2008, vol. 454, p. 280.

    Article  CAS  Google Scholar 

  20. Liu, B.H., Li, Z.P., and Suda, S., Electrochim. Acta, 2004, vol. 49, p. 3097.

    Article  CAS  Google Scholar 

  21. Cheng, H., Scott, K., and Lovell, K., Fuel Cells, 2006, vol. 6, p. 367.

    Article  CAS  Google Scholar 

  22. Liu, B.H. and Li, Z.P., J. Power Sources, 2009, vol. 187, p. 291.

    Article  CAS  Google Scholar 

  23. Liu, B.H., Li, Z.P., Zhu, J.K., and Suda, S., J. Power Sources, 2008, vol. 183, p. 151.

    Article  CAS  Google Scholar 

  24. Tsivadze, A.Yu., Tarasevich, M.R., Titova, V.N., Yavich, A.A., and Petrova, N.V., Dokl. Akad. Nauk, 2007, vol. 414, no. 2, p. 211.

    Google Scholar 

  25. Li, Z.P., Liu, B.H., Zhu, J.K., and Suda, S., J. Power Sources, 2006, vol. 163, p. 555.

    Article  CAS  Google Scholar 

  26. Kulova, T.L., Mayorova, N.A., Pasynskii, A.A., and Grinberg, V.A., in Sovremennye problemy fizicheskoi khimii nanomaterialov (Modern Problems of Physical Chemistry of Nanomaterials), Moscow: Granitsa, 2008, pp. 390–402.

    Google Scholar 

  27. Patterson, A.L., Phys. Rev., 1939, vol. 56, no. 10, p. 978.

    Article  CAS  Google Scholar 

  28. ICDD, PDF-2/Release 2006.

  29. Hull, A.W., Ann. Phys. (Leipzig), 1920, vol. 61, p. 421; Phys. Rev. 1921, vol. 17, p. 571; Phys. Rev., 1917, vol. 10, p. 661; Phys. Rev., 1923, vol. 21, p. 402.

    Google Scholar 

  30. Hull, A.W. and Davey, W.P., Phys. Rev., 1921, vol. 17, p. 571.

    Article  CAS  Google Scholar 

  31. Hull, A.W. and Davey, W.P., Rend. 1st. Lomb. Sci. Lett., Cl. Sci. Mat. Nat., 1926, vol. 59, p. 208.

    Google Scholar 

  32. Hull, A.W. and Davey, W.P., Science, 1920, vol. 52, p. 227.

    Article  CAS  Google Scholar 

  33. Hull, A.W. and Davey, W.P., Z. Phys. Chem. (Leipzig), 1926, vol. 121, p. 67.

    Google Scholar 

  34. Myasnikova, K.P. and Kornilov, I.I., Izv. Akad. Nauk SSSR, Otd. Tekhn. Nauk, Ser. Metallurgiya Gornoe Delo, 1964, no. 1, p. 159.

  35. Kornilov, I.I. and Myasnikova, K.P., Russ. Metall. Mining, 1964, vol. 4, p. 95.

    Google Scholar 

  36. Raub, E. and Menzel, D., Z. Metallkd., 1961, vol. 52, p. 831.

    CAS  Google Scholar 

  37. Schubert K. and Pfisterer, H., Z. Metallkd., 1950, vol. 41, p. 433.

    CAS  Google Scholar 

  38. Perring, L., Thesis, Univ. de Lausanne, Switzerland, personal communication, 1997.

  39. Finnie L., J. Less-Common Met., 1962, vol. 4, p. 24.

    Article  CAS  Google Scholar 

  40. Wolf, W., Bihlmayer, G., and Bluegel, S., Phys. Rev. B, 1997, vol. 55, p. 6918.

    Article  CAS  Google Scholar 

  41. Ray, S., Zalkin, A., and Templeton, D.H., Acta Crystallogr. B, 1973, vol. 29, p. 2741.

    Article  CAS  Google Scholar 

  42. Finkelshtain, G., Katsman, Y., Filanovsky, B., et al., US Patent 6554877, 2003.

  43. Grinberg, V.A., Maiorova, N.A., and Pasynskii, A.A., Elektrokhimiya, 2009, vol. 45, p. 1427 [Russ. J. Electrochem. (Engl. Transl.), vol. 45, p. ]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Grinberg.

Additional information

Original Russian Text © V.A. Grinberg, N.A. Mayorova, A.A. Korlyukov, A.A. Pasynskii, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 11, pp. 1377–1384.

The paper was prepared for a special issue dedicated to the birth centenary of Ya.M. Kolotyrkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinberg, V.A., Mayorova, N.A., Korlyukov, A.A. et al. Direct borohydride oxidation electrocatalysts based on Ni-Ru/C and Ni-Ru-F/C alloys. Russ J Electrochem 46, 1289–1296 (2010). https://doi.org/10.1134/S1023193510110091

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510110091

Keywords

Navigation