Skip to main content
Log in

The carbon nanotubes-polyaniline composites and their effect on catalytic properties of deposited catalysts

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Composites of functionalized single-wall carbon nanotubes and polyaniline are deposited onto electrodes by in situ electrochemical polymerization. Their electrochemical behavior and differential capacitance are studied by cyclic voltammetry, electrochemical impedance spectroscopy, and chronovoltamperometry. The differential capacitance of the composite electrode exceeds that of pure polyaniline film deposited onto electrode, which can be explained by the nanotubes’ loosening effect on the polyaniline structure. The composite-electrode capacitance is as large as 1000 F g−1 or higher. Thus obtained composite films were used as a support for deposited platinum-ruthenium catalyst. The Pt-Ru structure and catalytic properties in the methanol oxidation reaction are studied. It is shown that the specific current of methanol oxidation at Pt-Ru is larger by a factor of 7–15 than those measured when pure polyaniline, pure carbon nanotubes, or standard Vulcan XC-72 carbon black are used as supports. It is found that the catalytic activity is the same for all studied supports, provided the current is reduced to the unit of Pt-Ru true surface area. Thus, the observed large catalytic effect is associated with the structure and high dispersivity of the electrodeposited metals incorporated to the single-wall carbon nanotubes-polyaniline composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joo, S.H., Pak, C., Kim, E.A., Lee, Y.H., Chang, H., Seuhg, D., Choi, Y.S., Park, J.-B., and Kim, T.K., Power Sources, 2008, vol. 180, p. 63.

    Article  CAS  Google Scholar 

  2. Reshetenko, T.V., Kim, H.K., and Kweon, H.-J., Electrochim. Acta, 2008, vol. 53, p. 3043.

    Article  CAS  Google Scholar 

  3. Du, C.Y., Zhao, T.S., and Liang, Z.X., Power Sources, 2008, vol. 176, p. 9.

    Article  CAS  Google Scholar 

  4. Kaempgen, M., Lebert, M., Roth, S., Soehn, M., and Nicoloso, N., Power Sources, 2008, vol. 180, p. 755.

    Article  CAS  Google Scholar 

  5. Natarajan, S.K. and Hamelin, J., Electrochim. Acta, 2007, vol. 52, p. 3751.

    Article  CAS  Google Scholar 

  6. Xu, Y. and Lin, X., Electrochim. Acta, 2007, vol. 52, p. 5140.

    Article  CAS  Google Scholar 

  7. Zhao, Y., E Y., Fan, L., Qiu Y., and Yang S., Electrochim. Acta, 2007, vol. 52, p. 5873.

    Article  CAS  Google Scholar 

  8. Wang, J.J., Yin, G.P., Zhang, J., Wang, Z.B., and Gao, Y.Z., Electrochim. Acta, 2007, vol. 52, p. 7042.

    Article  CAS  Google Scholar 

  9. Prabhuram, J., Zhao, T.S., Liang, Z.X., and Chen, R., Electrochim. Acta, 2007, vol. 52, p. 2649.

    Article  CAS  Google Scholar 

  10. Saha, M.S., Li, R., and Sun, X., Power Sources, 2008, vol. 177, p. 314.

    Article  CAS  Google Scholar 

  11. Mayorova, N.A., Tusseeva, E.K., Sosenkin, V.E., Rychagov, A.Yu., Volfkovich, Yu.M., Krestinin, A.V., Zvereva, G.I., Zhigalina, O.M., and Khazova, O.A., Elektrokhimiya, 2009, vol. 45, p. 1168 [Russ. J. Electrochem. (Engl. Transl.), vol. 45, p. ].

    Google Scholar 

  12. Chen, G.Z., Shaffer, M.S.P., Coleby, D., Dixon, G., Zhou, W., Fray, D.J., and Windle, A.H., Adv. Mater., 2000, vol. 12, p. 522.

    Article  CAS  Google Scholar 

  13. Wu, M., Snook, G.A., Gupta, V., Shaffer, M., Fray, D.J., and Chen, G.Z., J. Mater. Chem., 2005, vol. 15, p. 2297.

    Article  CAS  Google Scholar 

  14. Abalyaeva, V.V., Nikolaeva, G.V., and Efimov, O.N., Elektrokhimiya, 2008, vol. 44, p. 893 [Russ. J. Electrochem. (Engl. Transl.), vol. 44, p. ].

    Google Scholar 

  15. Wu, T.M., Lin, Y.W., and Liao, C.S., Carbon, 2005, vol. 43, p. 734.

    Article  CAS  Google Scholar 

  16. Feng, W., Bai, X.D., Lian, Y.Q., Liang, J., Wang, X.G., and Yoshino, K., Carbon, 2003, vol. 41, p. 1551.

    Article  CAS  Google Scholar 

  17. Khomenko, V., Frackowiak, E., and Beguin, F., Electrochim. Acta, 2005, vol. 50 P, p. 2499.

    Article  Google Scholar 

  18. Maser, W.K., Benito, A.M., Callejas, M.A., Seeger, T., Martinez, M.T., Schreiber, J., Muszynski, J., Chauvet, O., Osvath, Z., Koos, A.A., and Biro, L.P., Mater. Science Eng., 2003, vol. 23, p. 87.

    Article  Google Scholar 

  19. Mi, H., Zhang, X., An, S., Ye, X., and Yang, S., Electrochem. Commun., 2007, vol. 9, p. 2859.

    Article  CAS  Google Scholar 

  20. Santhosh, P., Manesh, K.M., Lee, K.P., and Gopalan, A.I., Electroanalysis, 2006, vol. 18, p. 894.

    Article  CAS  Google Scholar 

  21. Zeng, J., Wei, W., Wu, L., Liu, X., Liu, K., and Li, Y., J. Electroanal. Chem., 2006, vol. 595, p. 152.

    Article  CAS  Google Scholar 

  22. Huang, J.-E., Li, X.-H., Xu, J.-C., and Li, H.-L., Carbon, 2003, vol. 41 P, p. 2731.

    Article  Google Scholar 

  23. Peng, C., Jin, J., and Chen, G.Z., Electrochim. Acta, 2007, vol. 53, p. 525.

    Article  CAS  Google Scholar 

  24. Sapurina, I.Yu., Kompan, M.E., Zabrodskii, A.G., Steikal, Ya., and Trkhova, M., Elektrokhimiya, 2007, vol. 43, p. 554 [Russ. J. Electrochem. (Engl. Transl.), vol. 43, p. ].

    Google Scholar 

  25. Wang, Z., Zhu, Z.Z., Shi, J., and Li, H.L., Appl. Surf. Sci., 2007, vol. 253, p. 8811.

    Article  CAS  Google Scholar 

  26. Hu, Z.A., Ren, L.J., Feng, X.J., Wang, Y.P., Yang, Y.Y., Shi, J., Mo, L.P., and Lei, Z.Q., Electrochem. Commun., 2007, vol. 9, p. 97.

    Article  CAS  Google Scholar 

  27. Zhu, Z.Z., Wang, Z., and Li, H.L., Appl.Surf. Sci., 2008, vol. 254, p. 2934.

    Article  CAS  Google Scholar 

  28. Wu, G. and Xu, B.-Q., J. Power Sources, 2007, vol. 174, p. 148.

    Article  CAS  Google Scholar 

  29. Jiang, C., Chen, H., Yu, C., Zhang, S., Liu, B., and Kong, J., Electrochim. Acta, 2009, vol. 54, p. 1134.

    Article  CAS  Google Scholar 

  30. Santhosh, P., Gopalan, A., and Lee, K.P., J. Catal., 2006, vol. 238, p. 177.

    Article  CAS  Google Scholar 

  31. Wu, G., Li, L., Li, J.H., and Xu, B.Q., J. Power Sources, 2006, vol. 155, p. 118.

    CAS  Google Scholar 

  32. Selvaraj, V. and Alagar, M., Electrochem. Commun., 2007, vol. 9, p. 1145.

    Article  CAS  Google Scholar 

  33. Rourke, F. and Crayston, J.A., J. Chem.Soc. Faraday Trans., 1993, vol. 89, no. (2), p. 295.

    Article  CAS  Google Scholar 

  34. Stilwell, D.E. and Park, S.-M., J.Electrochem. Soc., 1988, vol. 135, p. 2491.

    Article  CAS  Google Scholar 

  35. Tusseeva, E.K., Mikhaylova, A.A., Khazova, O.A., and Kurtakis, K.-D., Elektrokhimiya, 2004, vol. 40, p. 1336 [Russ. J. Electrochem. (Engl. Transl.), vol. 40, p. ].

    Google Scholar 

  36. Tuseeva, E.K., Maiorova, N.A., Sosenkin, V.E., Nikol’skaya, N.F., Volfkovich, Yu.M., Krestinin, A.V., Zvereva, G.I., Grinberg, V.A., and Khazova, O.A., Elektrokhimiya, 2008, vol. 44, p. 955 [Russ. J. Electrochem. (Engl. Transl.), vol. 44, p. ].

    Google Scholar 

  37. Volfkovich, Yu.M., Bagotzky, V.S., Zolotova, T.K., and Pisarevskaya, E.Yu., Electrochim. Acta, 1996, vol. 41, p. 1905.

    Article  CAS  Google Scholar 

  38. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., Colloid and Surfaces A: Physicochemical and Engineering Aspects, 2001, vol. 187–188, p. 349.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Khazova.

Additional information

Original Russian Text © A.A. Mikhaylova, E.K. Tusseeva, A.Yu. Rychagov, Yu.M. Vol’fkovich, A.V. Krestinin, O.A. Khazova, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 11, pp. 1368–1376.

The paper was prepared for a special issue dedicated to the birth centenary of Ya.M. Kolotyrkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikhaylova, A.A., Tusseeva, E.K., Rychagov, A.Y. et al. The carbon nanotubes-polyaniline composites and their effect on catalytic properties of deposited catalysts. Russ J Electrochem 46, 1280–1288 (2010). https://doi.org/10.1134/S102319351011008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351011008X

Keywords

Navigation