Skip to main content
Log in

Composition, surface segregation, and electrochemical properties of binary PtM/C (M = Co, Ni, Cr) catalysts

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of the nature of transient metal and chemical treatment of binary cathodic PtM/C (M = Co, Ni, Cr) catalysts, which were prepared by high-temperature synthesis, on their structure, surface segregation, and characteristic properties (activity and stability) is studied. It is shown that, in the course of treatment in 0.5 M H2SO4 at the elevated temperature (60°C), the surface of nanoparticles becomes enriched in platinum with the formation of core-shell structures. The PtCo/C catalyst is the most efficient one. In this case, a compromise between the corrosion resistance and electrocatalytic activity is reached due to a higher, as compared with PtNi/C and PtCr/C, degree of alloy formation and enriching of surface in platinum in the course of corrosive attack. Thereby, the properties of platinum on the core surface change as a result of a pronounced ligand effect of the core. Thus, depending on the nature of transient metal, the binary cathodic PtM/C catalysts differ in their activity and stability, which depend on the degree of alloy formation and a possibility of formation of core-shell structure as a result of surface segregation in the course of synthesis and chemical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukerjee, S., Srinivasan, S., Soriaga, M.P., and McBreen, J., J. Phys. Chem., 1995, vol. 99, p. 4577.

    Article  CAS  Google Scholar 

  2. Thompset, D., in Handbook of Fuel Cells. Fundamental and Applications, Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., Chichester, UK: Wiley, 2003, vol. 3, ch. 37, p. 467.

    Google Scholar 

  3. Antolini, E., Salgaro, J.R.C., and Gonzalez, E.R., J. Power Sources, 2006, vol. 160, p. 957.

    Article  CAS  Google Scholar 

  4. Stamenkovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., J. Phys. Chem. B, 2002, vol. 106, p. 11970.

    Article  CAS  Google Scholar 

  5. Colon-Mercado, H.R. and Popov, B.N., J. Power Sources, 2006, vol. 155, p. 253.

    CAS  Google Scholar 

  6. Koh, S., Chengfei, Y., Mani, P., Srivastava, R., and Strasser P, J. Power Sources, 2007, vol. 172, p. 50.

    Article  CAS  Google Scholar 

  7. Bogdanovskaya, V.A., Tarasevich, M.R., Kuznetsova, L.N., and Radina, M.V., Zh. Fiz. Khim., 2009, vol. 83, no. 12, p. 2244 [Russ. J. Phys. Chem. A, (Engl. Transl.), vol. 83, no. 12, p. 2045].

    Google Scholar 

  8. Nilekar, A.U., Xu, Y., and Zhang, J., Top. Catal., 2007, vol. 46, p. 276.

    Article  CAS  Google Scholar 

  9. Adzic, R.R., Zhang, J., Sasaki, K., Vukmirovic, M.B., Shao, M., Wang, J.X., Nilekar, A.U., Mavrikakis, M., Valerio, J.A., and Uribe, F., Top. Catal., 2007, vol. 46, p. 249.

    Article  CAS  Google Scholar 

  10. Debe, M.K., in Handbook of Fuel Cells. Fundamental and Applications, Vielstich, W., Lamm, A., and Gasteiger, H.A., Eds., Chichester, UK: Wiley, 2003, vol. 3, ch. 45, p. 576.

    Google Scholar 

  11. Moffat, T.P., Mallett, J.J., and Hwang, S.-M., J. Electrochem. Soc., 2009, vol. 156, p. B238.

    Article  CAS  Google Scholar 

  12. Yuyan Shao, Jiehe Sui, Geping Yin, and Yuinzhi Gao, Appl. Catal. B: Environmental, 2008, vol. 79, p. 89.

    Article  Google Scholar 

  13. Koh, S. and Strasser, P., J. Am. Chem. Soc., 2007, vol. 129, p. 12624.

    Article  CAS  Google Scholar 

  14. Mani, P., Srivastava, R., and Strasser, P., J. Phys. Chem. C, 2008, vol. 112, p. 2770.

    Article  CAS  Google Scholar 

  15. Zhang, J., Lima, F.H.B., Shao, M.H., Sasaki, K., Wang, X., Hanson, J., and Adzic, R.R., J. Phys. Chem. B, 2005, vol. 109, p. 22701.

    Article  CAS  Google Scholar 

  16. Ross, P.N, in Electrocatalysis, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley, 1998, p. 43.

    Google Scholar 

  17. Watanabe, M., Tsurumi, K., Mizukami, T., Nakamura, T., and Stonehart, P., J. Electrochem. Soc., 1994, vol. 141, p. 2659.

    Article  CAS  Google Scholar 

  18. Kitchin, J.R., Norskov, J.K., Barteau, M.A., and Chen, J.G., J. Chem. Phys., 2004, vol. 120, p. 10240.

    Article  CAS  Google Scholar 

  19. Greeley, J., Norskov, J.K., and Mavrikakis, M., Fnn. Rev. Phys. Chem, 2002, vol. 53, p. 319.

    Article  CAS  Google Scholar 

  20. Travitsky, N., Ripenbein, T., Golodnitsky, D., Rosenberg, Y., Burshtein, L., and Peled, E., J. Power Sources, 2006, vol. 161, p. 782.

    Article  CAS  Google Scholar 

  21. Guterman, A.V., Pakhomova, E.B., Guterman, V.E., Kabirov, Yu.V., and Grigor’ev, V.P., Neorg. Mater., 2009, vol. 45, p. 829.

    Google Scholar 

  22. Gasteiger, H.A., Kocha, S.S., Sompalli, B., and Wagner, F.T., Appl. Catalysis B: Environmental, 2005, vol. 56, p. 9.

    Article  CAS  Google Scholar 

  23. Paulus, U.A., Wokaun, A., Scherer, G.G., Schmidt, T.J., Stamenkovic, V., Markovic, M., and Ross, P.N., Electrochim. Acta, 2002, vol. 47, p. 3787.

    Article  CAS  Google Scholar 

  24. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsom (Ring-Disk Rotating Electrode), Moscow: Nauka, 1987.

    Google Scholar 

  25. Tarasevich, M.R., Chalykh, A.E., Bogdanovskaya, V.A., Kuznetsova, L.N., Kapustina, N.A., Efremov, B.N., Ehrenburg, M.R., and Reznikova, L.A., Electrochim. Acta, 2006, vol. 51, p. 4455.

    Article  CAS  Google Scholar 

  26. Safonov, V.A., Lapa, A.S., Mansurov, G.N., and Petrii, O.A., Elektrokhimiya, 1980, vol. 16, p. 439.

    CAS  Google Scholar 

  27. Bogdanovskaya, V.A., Tarasevich, M.R., Kuznetsova, L.N., Zhutaeva, G.V., and Lozovaya, O.V., Elektrokhimiya, 2010, vol. 46, no. 8 [Russ. J. Electrochem. (Engl. Transl.), vol. 46, no. 8].

  28. Mitsushima, S., Koizumi, Y., Uzuka, S., and Ota, K.-I., Electrochim. Acta, 2008, vol. 54, p. 455.

    Article  CAS  Google Scholar 

  29. Umeda, M., Maruta, T., Inoue, M., and Nakazava, A., J. Phys. Chem. C, 2008, vol. 112, p. 18098.

    Article  CAS  Google Scholar 

  30. Tarasevich, M.R., Bogdanovskaya, V.A., Lubnin, E.N., and Reznikova, L.A., Koroziya: Materialy, Zashchita, 2006, no. 10, p. 22.

  31. Xingwen, Yu. and Siyu, Ye., J. Power Sources, 2007, vol. 172, p. 145.

    Article  Google Scholar 

  32. Bonakdarpour, A., Lake, K., Stevens, K., and Dahn, J.R., J. Electrochem. Soc., 2008, vol. 155, p. B108.

    Article  CAS  Google Scholar 

  33. Tarasevich, M.R, Sadkovsky, A, and Yeager, E, in Comprehensive Treatise of Electrochemistry, Conway, B.E., Bockris, J.O., Yeager, E., Kahn, S.U.M., and White, R.E., Eds., New York: Plenum, 1983, p. 301.

    Google Scholar 

  34. Šepa, D.B., Vojnović, M.V., and Damjanović, A., Electrochim. Acta, 1981, vol. 26, p. 781.

    Article  Google Scholar 

  35. Stamenkovic, V., Schmidt, T.J., Ross, P.N., and Markovic, N.M., J. Electroanal. Chem., 2003, vol. 554–555, p. 191.

    Article  Google Scholar 

  36. Wei, Z., Guo, H., and Tang, Z., J. Power Sources, 1996, vol. 62, p. 233.

    Article  CAS  Google Scholar 

  37. Salgado, J.R.C., Antolini, E., and Gonzalez, E.R., J. Phys. Chem. B, 2004, vol. 108, p. 17767.

    Article  CAS  Google Scholar 

  38. Colon-Mercado, H.R., Kim, H., and Popov, B.N., Electrochem. Commun, 2004, vol. 6, p. 795.

    Article  CAS  Google Scholar 

  39. Sukhotin, A.M. and Lisovaya, E.V., in Itogi Nauki Tekh., Ser.: Korroz. Zashch. Korroz., Moscow: VINITI, 1986, vol. 12, p. 61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bogdanovskaya.

Additional information

Original Russian Text © V.A. Bogdanovskaya, M.R. Tarasevich, L.A. Reznikova, L.N. Kuznetsova, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 9, pp. 1077–1087.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanovskaya, V.A., Tarasevich, M.R., Reznikova, L.A. et al. Composition, surface segregation, and electrochemical properties of binary PtM/C (M = Co, Ni, Cr) catalysts. Russ J Electrochem 46, 1011–1020 (2010). https://doi.org/10.1134/S1023193510090077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510090077

Key words

Navigation