Skip to main content
Log in

Specific characteristics of molten carbonate fuel cell in realization of electrochemical coal oxidation

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The test object was a fuel cell with free molten carbonate electrolyte providing realization of direct electrochemical oxidation of solid hydrocarbons. This study involved the effect of the fuel type and dispersion as well as cathode reagent gas mixture composition to the fuel cell functional parameters. The used fuels were dispersed and monolithic graphite, anthracite, and jet coal specimens. The effect of oxygen/carbon dioxide ratio on the mixture fed to cathode to the open circuit cell voltage and achieved current density levels was studied with respect to interrelation of the processes taking place in the cathode and anode units of the fuel cell. A correlation was noted between the specific fuel cell characteristics and hydrogen content in the fuel material. The highest level of current density and specific power was recorded for jet coal characterized with high hydrogen content. The different characteristics of monolithic and dispersed fuel specimens were accounted for by the effect of losses at contacts between particles. Achievement of high current density and specific power was demonstrated by using dispersed coal fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Recent Trends in Fuel Cell Science and Technology, Basu, S., Ed., New Delhi: Anamaya, 2007.

    Google Scholar 

  2. Cao, D., Sun, Y., and Wang, G., J. Power Sources, 2007, vol. 167, p. 250.

    Article  CAS  Google Scholar 

  3. Justi, E.W., Winsel, A.W.., and Fuel, Cells., Wiesbaden: Franz Steiner Verlag GmbH, 1962.

  4. Fuel Cell Systems, Blomen, L.J.M.J. and Mugerwa, M.N., Eds., New York: Plenum, 1993.

    Google Scholar 

  5. Jacques, W.W., US Pat. 555511 (1896).

  6. Howard, H.C, in Chemistry of goal utilization, Lowry, H.H., Ed., New York: John Wiley and Sons, 1945, vol. 2, ch. 35.

    Google Scholar 

  7. Liebhafsky, H.A. and Cairns, E.J., Fuel Cells and Fuel Batteries: A Guide To Their Research and Development, New York: Wiley, 1968.

    Google Scholar 

  8. Pointon, K., Lakeman, B., Irvine, J., Bradley, J., and Jain, S., J. Power Sources, 2006, vol. 162.

  9. Handbook of Fuel Cells: Fundamentals, Technology, Applications, Vielstich, W.., Gasteiger, H.A., and Lamm, A., Eds., New York: Wiley, 2003.

    Google Scholar 

  10. Gur, T.M. and Huggins, R.A., J. Electrochem. Soc., 1992, vol. 139, p. 95.

    Article  Google Scholar 

  11. Horita, T., Sakai, N., Kawada, T., Yokokawa, H., and Dokiya, M., J. Electrochem. Soc., 1995, vol. 142, p. 2621.

    Article  CAS  Google Scholar 

  12. Zecevic, S., Patton, E.M., and Parhami, P., Carbon, 2004, vol. 42, p. 1983.

    Article  CAS  Google Scholar 

  13. Zecevic, S., Patton, E.M., and Parhami, P., Chem. Engineering Comm, 2005, vol. 192, p. 1655.

    Article  CAS  Google Scholar 

  14. Peelen, W.H.A., Olivry, M., Au, S.F., Fehribach, J.D., and Hemmes, K., J. Appl. Electrochem., 2000, vol. 30, p. 1389.

    Article  CAS  Google Scholar 

  15. Cherepy, N.J., Krueger, R., Fiet, K.J., Jankowski, A.F., and Cooper, J.F., J. Electrochem. Soc., 2005, vol. 152, p. 80.

    Article  Google Scholar 

  16. Galasiu, I., Galaciu, R., and Thonstad, J., Electroochemistry in nonaqueous solutions., Izutsu K., Ed. Wiley-VCH, 2002, pp. 461–591.

  17. Molten salt techniques, Lovering, D.G. and Gale, R.J., Eds., New York: Plenum, 1983.

    Google Scholar 

  18. Selman, J.R., Energy, 1986, vol. 11, nos. 1–2, p. 153.

    CAS  Google Scholar 

  19. Sorensen, B., Hydrogen and Fuel Cells, London: Elsevier Acad. Press, 2005.

    Google Scholar 

  20. Nakoryakov, V.E. and Predtechensky, M.R., J. Engineering Thermophysics, 2002, vol. 11, p. 1.

    CAS  Google Scholar 

  21. Predtechenskii, M.R., Varlamov, Yu.D., Bobrenok, O.F., and Ul’yankin, S.N., Doklady Physics, 2009, vol. 54, no. 6, p. 281.

    Article  CAS  Google Scholar 

  22. Yuh, C.Y. and Farooque, M., Advanced materials & Processes, 2002, vol. 160, p. 31.

    CAS  Google Scholar 

  23. Appleby, A.J. and Foulkes, F.R., Fuel Cell Handbook, New York: Van Nostrand Reinhold, 1989.

    Google Scholar 

  24. Claes, P., Moyaux, D., and Peeters, D., Europ. J. Inorg. Chem, 1999, no. 4, p. 583.

  25. Frangini, S. and Scaccia, S., J. Electrochem. Soc., 2004, vol. 151, no. Iss. 8, p. A1251.

    Article  CAS  Google Scholar 

  26. Matveeva, I.I., Novitskii, N.V., and Vdovichenko, V.S., Energeticheskoe toplivo SSSR. Spravochnik (USSR Power-Plant Fuel. Handbook), Moscow: Energiya, 1979.

    Google Scholar 

  27. Justi, E.W., British J. Appl. Physics, 1963, vol. 14, p. 840.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Varlamov.

Additional information

Original Russian Text © M.R. Predtechenskii, Yu.D. Varlamov, S.N. Ul’yankin, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 8, pp. 927–933.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Predtechenskii, M.R., Varlamov, Y.D. & Ul’yankin, S.N. Specific characteristics of molten carbonate fuel cell in realization of electrochemical coal oxidation. Russ J Electrochem 46, 871–876 (2010). https://doi.org/10.1134/S1023193510080021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510080021

Key words

Navigation