Skip to main content
Log in

Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Nanoparticles of various elements such as Si, Al, and Zr were formed by plasma-induced cathodic discharge electrolysis in molten chloride electrolyte under a 1 atm Ar atmosphere. Al and Si nanoparticles with 100 nm diameters were obtained from an LiCl-KCl-CsCl melt at 300°C. Zr nanoparticles with diameters less than 50 nm were obtained from an LiCl-KCl at 450°C. Then with a newly designed and constructed “rotating disk anode type electrolytic cell”, Ti nanoparticles with diameters less than 20 nm were obtained. Finally, to find more appropriate condition for obtaining finer and more uniform nanoparticles, the effects of the pulse conditions of the applied current and the rotating velocity of a disk anode on size and morphology among the obtained nanoparticles were investigated by choosing Ni nanoparticle formation as an example. The results showed that quick removal of the formed fine nanoparticles from the melt surface, where the discharge column is standing, is the most important factor to obtain smaller and more uniform nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Puntes, V.F., Krishnan, K.M., and Alivisatos, A.P., Science, 2001, vol. 291, p. 2115.

    Article  CAS  Google Scholar 

  2. Curtius, J., C.R. Physique, 2006, vol. 7, p. 1027.

    Article  CAS  Google Scholar 

  3. Becker, M.F., Brock, J.R., Cai, H., Henneke, D.E., Keto, J.W., Lee, J., Nichols, W.T., and Glicksman, H.D., NanoStructured Mater., 1998, vol. 10, p. 853.

    Article  CAS  Google Scholar 

  4. Tseng, W.J. and Chen, C.N., J. Mater. Sci., 2006, vol. 41, p. 1213.

    Article  CAS  Google Scholar 

  5. Chen, W., Li, L., Qi, J., Wang, Y., and Gui, Z., J. Am. Ceram. Soc., 1998, vol. 81, p. 2751.

    Google Scholar 

  6. Lok, J.G.S., Geim, A.K., Maan, J.C., Dubonos, S.V., Kuhn, L.T., and Lindelof, P.E., Phys. Rev., Ser. B, 1998, vol. 58, p. 12201.

    Article  CAS  Google Scholar 

  7. Yoshinaga, M., Takahashi, H., Yamamoto, K., Muramatsu, A., and Morikawa, T., J. Colloid Interface Sci., 2007, vol. 309, p. 149.

    Article  CAS  Google Scholar 

  8. Qin, C. and Coulombe, S., Plasma Source Sci. Technol., 2007, vol. 16, p. 240.

    Article  CAS  Google Scholar 

  9. Magnusson, M.H., Deppert, K., and Malm, J.O., J. Mater. Res., 2000, vol. 15, p. 1564.

    Article  CAS  Google Scholar 

  10. Svrcek, V., Rehspringer, J.L., Gaffet, E., Slaoui, A., and Muller, J.C., J. Cryst. Growth, 2005, vol. 275, p. 589.

    Article  CAS  Google Scholar 

  11. Sandu, I., Moreau, P., Guyomard, D., Brousse, T., and Roue, L., Solid State Ionics, 2007, vol. 178, p. 1297.

    Article  CAS  Google Scholar 

  12. Meda, L., Marra, G., Galfetti, L., Severini, F., and Luca, L.D., Mater. Sci. Eng., 2007, vol. 27, p. 1393.

    Article  CAS  Google Scholar 

  13. Ryu, J.R., Moon, K.I., and Lee, K.S., J. Alloys Compounds, 2000, vol. 296, p. 157.

    Article  CAS  Google Scholar 

  14. Srinivasarao, B., Suryanarayana, C., Oishi, K., and Hono, K., Mater. Sci. Eng., Ser. A, 2009, vol. 518, p. 100.

    Article  Google Scholar 

  15. Chen, Z., Zhang, M., Han, W., Wang, X., and Tang, D., J. Alloys Compounds, 2008, vol. 459, p. 209.

    Article  CAS  Google Scholar 

  16. Kawamura, H., Moritani, K., and Ito, Y., Plasmas Ions, 1998, vol. 1, p. 29.

    Article  CAS  Google Scholar 

  17. Kawamura, H., Moritani, K., and Ito, Y., J. Jpn. Soc. Powder, Powder Metallur. (Jpn), 1998, vol. 45, p. 1142.

    CAS  Google Scholar 

  18. Oishi, T., Kawamura, H., and Ito, Y., J. Appl. Electrochem., 2002, vol. 32, p. 819.

    Article  CAS  Google Scholar 

  19. Tokushige, M., Nishikiori, T., and Ito, Y., J. Appl. Electrochem. (in press).

  20. Tokushige, M., Yamanaka, T., Matsuura, A., Nishikiori, T., and Ito, Y., IEEE Trans. Plasma Sci., 2009, vol. 37, p. 1156.

    Article  CAS  Google Scholar 

  21. Ghosh, S., Vandarkuzhali, S., Venkatesh, P., Seenivasan, G., Subramanian, T., Reddy, B.P., and Nagarajan, N., J. Electroanal. Chem., 2009, vol. 627, p. 15.

    Article  CAS  Google Scholar 

  22. Kipoiros, G.J. and Flengas, S.N., J. Electrochem. Soc., 1985, vol. 132, p. 1087.

    Article  Google Scholar 

  23. Baboian, R., Hill, D.L., and Bailey, R.A., J. Electrochem. Soc., 1965, vol. 112, p. 1221.

    Article  Google Scholar 

  24. Suzuki, T., Electrochemistry, 1971, vol. 39, p. 864.

    CAS  Google Scholar 

  25. Kawase, M. and Ito, Y., J. Appl. Electrochem., 2003, vol. 33, p. 785.

    Article  CAS  Google Scholar 

  26. Sakamura, Y., J. Electrochem. Soc., 2004, vol. 151, p. C190.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tokushige.

Additional information

Published in Russian in Elektrokhimiya, 2010, Vol. 46, No. 6, pp. 657–665.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tokushige, M., Nishikiori, T. & Ito, Y. Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles. Russ J Electrochem 46, 619–626 (2010). https://doi.org/10.1134/S1023193510060042

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510060042

Key words

Navigation