Skip to main content
Log in

Peculiarities of anodic behavior of gold electrode in thiosulfate electrolytes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Using the methods of quartz microgravimetry and voltammetry, the anodic behavior of gold electrode in thiosulfate electrolytes is studied in the pH range of 7 to 11. It is found that, in the potential range from 0.15 to 1.0 V (NHE), the anodic current is associated predominantly with the oxidation of thiosulfate ions, and the gold dissolution rate in this electrolyte is negligibly low (< 0.02 mA/cm2). It is shown that the study of anodic processes in the neutral thiosulfate electrolytes requires stabilization of solution acidity, because the near-anode layer can be acidified to the pH values, which are sufficient for the formation of elemental sulfur. It is found that the use of Britten-Robinson buffer solution with pH 7 as the supporting electrolyte changes significantly the polarization curve of thiosulfate ion oxidation, but does not raise the gold dissolution rate. An increase in the solution pH to 11 and an exposure of electrode at various potentials (−0.5 and 0.15 V) prior to the onset of potential scanning also do not accelerate considerably the gold dissolution in the thiosulfate electrolyte. A comparison between the regularities of gold anodic behavior in the thiosulfate solutions and earlier studied gold dissolution in the cyanide and thiocarbamide electrolytes showed that they are similar. It is supposed that the specific features of anodic processes in these cases are of a similar nature: the metal dissolution proceeds with the formation of two-ligand complexes with linear structure, which is typical for all aforementioned ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  2. Pedraza, A.M., Villegas, I., Freund, P.L., and Chornik, B., J. Electroanal. Chem., 1988, vol. 250, p. 443.

    Article  CAS  Google Scholar 

  3. Zhuchkov, I.A. and Bubeev, P.P., Izv. Vyssh. Uchebn. Zaved. RF., Tsvetn. Metall., 1992, nos. 3–4, p. 85.

  4. Zhuchkov, I.A. and Bubeev, P.P., Izv. Vyssh. Uchebn. Zaved. RF., Tsvetn. Metall., 1994, nos. 4–6, p. 123.

  5. Shevtsova, O.N., Bek, R.Yu., et al., Elektrokhimiya, 2006, vol. 42, p. 279 [Russ. J. Electrochem. (Engl. Transl.), vol. 42, p. 239].

    Google Scholar 

  6. Aleksandrova, T.P., Ovchinnikova, S.N., Vais, A.A., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, p. 732 [J. Anal. Chem. (Engl. Transl.), vol. 54, p. 646].

    Google Scholar 

  7. Gabrielli, K. and Keddam, M., Elektrokhimiya, 1993, vol. 29, p. 117 [Russ. J. Electrochem. (Engl. Transl.), vol. 29, p. 106].

    CAS  Google Scholar 

  8. Gabrielli, C., Keddam, M., and Torresi, R., J. Electrochem. Soc., 1996, vol. 138, p. 2657.

    Article  Google Scholar 

  9. Vatankhah, G., Lessard, J., Jerkiewicz, G., Zolfaghari, A., and Conway, B.E., Electrochim. Acta, 2003, vol. 48, p. 1613.

    Article  CAS  Google Scholar 

  10. Zelinskii, A.G. and Bek, R.Yu., Elektrokhimiya, 1985, vol. 21, p. 66.

    CAS  Google Scholar 

  11. Kletenik, Yu.B. and Aleksandrova, T.P., Zh. Anal. Khim., 1997, vol. 52, p. 752 [J. Anal. Chem. (Engl. Transl.), vol. 52, p. 680].

    Google Scholar 

  12. Woods, R., Hope, G.A., Watling, K.M., and Jeffrey, M.J., J. Electrochem. Soc., 2006, vol. 153, p. D105.

    Article  CAS  Google Scholar 

  13. Vetter, K.J., Elektrochemische Kinetik, Berlin: Springer, 1961.

    Google Scholar 

  14. Dobos, D., Electrochemical Data. A Handbook for Electrochemists in Industry and Universities, Budapest: Akadémiai Kiádó, 1978.

    Google Scholar 

  15. Kakovskii, I.A., Izv. Akad.Nauk SSSR, Otd. Tekhn. Nauk, 1959, no. 7, p. 29.

  16. Pouradier, J. and Gadet, M.C., J. Chem. Phys., 1969, vol. 66, p. 109.

    CAS  Google Scholar 

  17. Angerstein-Kozlowsta, H., Conway, B.E., Barnet, B., and Mozota, J., J. Electroanal. Chem., 1979, vol. 100, p. 417.

    Article  Google Scholar 

  18. Smith, R. and Martell, A., Critical Stability Constants, vol. 4: Inorganic Complexes, New York: Plenum, 1976, p. 256.

    Google Scholar 

  19. Bek, R.Yu., Rogozhnikov, N.A., and Kosolapov, G.V., Elektrokhimiya, 1997, vol. 33, p. 131 [Russ. J. Electrochem. (Engl. Transl.), vol. 33, p. 119].

    Google Scholar 

  20. Bek, R.Yu. and Rogozhnikov, N.A., Elektrokhimiya, 1997, vol. 33, p. 629 [Russ. J. Electrochem. (Engl. Transl.), vol. 33, p. 579].

    Google Scholar 

  21. Bek, R.Yu., Rogozhnikov, N.A., Kosolapov, G.V., Shuraeva, L.I., and Ovchinnikova, S.N., Elektrokhimiya, 1998, vol. 34, p. 1022 [Russ. J. Electrochem. (Engl. Transl.), vol. 34, p. 918].

    Google Scholar 

  22. Bek, R.Yu. and Shuraeva, L.I., Elektrokhimiya, 2008, vol. 44, p. 123 [Russ. J. Electrochem. (Engl. Transl.), vol. 44, p. 113].

    Google Scholar 

  23. Bryce, R., Charnock, J., Pattrick, A., and Lennie, A., J. Phys. Chem., 2003, vol. 107, p. 2516.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Shevtsova.

Additional information

Original Russian Text © R.Yu. Bek, O.N. Shevtsova, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 5, pp. 616–622.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bek, R.Y., Shevtsova, O.N. Peculiarities of anodic behavior of gold electrode in thiosulfate electrolytes. Russ J Electrochem 46, 581–587 (2010). https://doi.org/10.1134/S1023193510050137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510050137

Key words

Navigation