Skip to main content
Log in

Electron transfer through single-crystal silver electrode/n-decanthiol monolayer/NaNO3 solution interfaces

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The kinetics of Ru[(NH3)6]3+ reduction in 1 M NaNO3 solution at Ag(210) and Ag(111) singlecrystal electrodes modified by n-decanthiol monolayer is studied by electrochemical impedance spectroscopy and cyclic voltammetry. By using these two methods, standard rate constants of the redox reaction involving Ru[(NH3)6]3+/2+ redox couple in the absence and in the presence of the n-decanthiol film were estimated. The equivalent circuit describing the experimental data in the presence of the self-assembled organic monolayer and in the absence of redox reaction is an electrical circuit comprising a large resistance (∼106 Ω) connected in parallel with a capacitance (∼10−8 F). Analysis of kinetic data and extrapolation of Tafel lines resulted in the determination of the rate constant at unmodified Ag-electrode, which is characteristic of very fast heterogeneous electron transfer. The calculated rate constants for n-decanthiol-modified silver singlecrystal faces (210) and (111) in 1 M NaNO3 solution (pH 6.3) equal 4.63 × 10−5 and 3.05 × 10−5 cm/s, respectively. The results are compared with the data at hand reported by different authors for gold electrodes in indifferent electrolyte solution in the absence and in the presence of self-assembled monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finklea, H.O, in Electroanalytical Chemistry, vol. 19, Bard, A. and Rubinstein, I., Eds., New York: M. Dekker, 1996, p. 109.

    Google Scholar 

  2. Chen, D. and Li, J., Surface Science Reports, 2006, vol. 61, p. 445.

    Article  CAS  Google Scholar 

  3. Protsailo, L.V., Fawcett, W.R., Russel, D., and Meyer, R.L., Langmuir, 2002, vol. 18, p. 9342.

    Article  CAS  Google Scholar 

  4. Janek, R.P., Fawcett, W.R., and Ulman, A., Langmuir, 1998, vol. 14, p. 3011.

    Article  CAS  Google Scholar 

  5. Protsailo, L.V. and Fawcett, W.R., Electrochim. Acta, 2000, vol. 20, p. 3497.

    Article  Google Scholar 

  6. Tagliazucchi, M., Calvo, E.J., and Szleifer, I., Electrochim. Acta, 2008, vol. 53, p. 6740.

    Article  CAS  Google Scholar 

  7. Park, J., Kang, S.K., Chung, T.D., Chang, S.-K., and Kim, H., Microchem. J., 2001, vol. 68, p. 109.

    Article  CAS  Google Scholar 

  8. Evstefeeva, Yu.E. and Khanova, L.A., Elektrokhimiya, 2005, vol. 41, p. 872 [Russ. J. Electrochem. (Engl. Transl.), vol. 41, p.].

    Google Scholar 

  9. Finklea, H.O., Yoon, K., Chamberlain, E., Allen, J., and Haddox, R., J. Phys. Chem. B, 2001, vol. 105, p. 3088.

    Article  CAS  Google Scholar 

  10. Vallejo, A.E., Gervasi, C.A., and Gassa, L.M., Bioelectrochem. Bioenerg., 1998, vol. 47, p. 343.

    Article  CAS  Google Scholar 

  11. Comes, I., Di Paolo, R.E., Pereira, P.M., Pereira, I.A.C., Saraiva, L.M., Penedes, S., and Franco, R., Langmuir, 2006, vol. 22, p. 9809.

    Article  Google Scholar 

  12. Komura, T., Yamaguchi, T., Shimatani, H., and Okuhsio, R., Electrochim. Acta, 2004, vol. 49, p. 597.

    Article  CAS  Google Scholar 

  13. Doubova, L.M., Elektrokhimiya, 2009, vol. 45, p. 1197 [Russ. J. Electrochem. (Engl. Transl.), vol. 45, p. 1115].

    Google Scholar 

  14. Dubova, L.M., Elektrokhimiya, 2010, vol. 46, p. 81 [Russ. J. Electrochem. (Engl. Transl.), vol. 46, p.].

    CAS  Google Scholar 

  15. Millo, D., Bonifacio, A., Ranieri, A., Borsari, M., Gooijer, C., and van der Zwan, G., Langmuir, 2007, vol. 23, p. 4340.

    Article  CAS  Google Scholar 

  16. Muzikar, M. and Fawcett, W.R., Anal. Chem., 2004, vol. 76, p. 3607.

    Article  CAS  Google Scholar 

  17. Balland, V., Lecomte, S., and Limoges, B., Langmuir, 2009, vol. 25, p. 6532.

    Article  CAS  Google Scholar 

  18. Campuzano, S., Pedrero, M., Montemayor, M., and Fatas, E., J. Electroanal. Chem., 2006, vol. 586, p. 112.

    Article  CAS  Google Scholar 

  19. Feldberg, S.W., J. Electroanal. Chem., 2008, vol. 624, p. 45.

    Article  CAS  Google Scholar 

  20. Nazmutdinov, R.R., Manyurov, I.R., Zinkevicheva, T.T., Dzhang, Dzh., and Ul’strup, J., Elektrokhimiya, 2007, vol. 43, p. 346 [Russ. J. Electrochem. (Engl. Transl.), vol. 43, p.].

    Google Scholar 

  21. Finklea, H.O., Snider, D.A., Fedyk, J., Sabatini, E., Gafni, Y., and Rubinstein, I., Langmuir, 1993, vol. 9, p. 3660.

    Article  CAS  Google Scholar 

  22. Laibinis, P.E., Fox, M.A., Folkers, J.P., and Whitesides, G.M., Langmuir, 1991, vol. 7, p. 3167.

    Article  CAS  Google Scholar 

  23. Jenning, G.K. and Laibinis, P.E., Langmuir, 1996, vol. 12, p. 6173.

    Article  Google Scholar 

  24. Daifuku, H., Aoki, K., and Matsuda, H., J. Electroanal. Chem., 1982, vol. 140, p. 179.

    Article  CAS  Google Scholar 

  25. Murgida, D.H. and Hildebrandt, P., J. Phys. Chem. B, 2001, vol. 105, p. 1578.

    Article  CAS  Google Scholar 

  26. Kudelski, A., Vibration Spectroscopy, 2008, vol. 46, p. 34.

    Article  CAS  Google Scholar 

  27. Schweizer, M. and Kolb, D.M., J. Electroanal.Chem, 2004, vol. 564, p. 85.

    Article  CAS  Google Scholar 

  28. Han, S.W., Lee, S.J., and Kim, K., Langmuir, 2001, vol. 17, p. 6981.

    Article  CAS  Google Scholar 

  29. Hsu, J.W.P., Clift, W.M., and Brewert, L.N., Langmuir, 2008, vol. 24, p. 5375.

    Article  CAS  Google Scholar 

  30. Safonov, V.A., Krilenko, A.G., and Choba, M.A., Electrochim. Acta, 2008, vol. 53, p. 4859.

    Article  CAS  Google Scholar 

  31. Hodak, J., Etchenique, R., and Calvo, E.J., Langmuir, 1997, vol. 13, p. 2708.

    Article  CAS  Google Scholar 

  32. Sabatini, E., Rubinstein, I., Maoz, R., and Sagiv, J., J. Electroanal. Chem, 1987, vol. 219, p. 365.

    Article  Google Scholar 

  33. Dannenberg, O., Buck, M., and Grunze, M., J. Phys. Chem. B, 1999, vol. 103, p. 2202.

    Article  Google Scholar 

  34. Bachetta, M., Trasatti, S., Doubova, L., and Hamelin, A., J. Electroanal. Chem., 1986, vol. 200, p. 389.

    Article  CAS  Google Scholar 

  35. Damaskin, B.B., Elektrokhimiya, 2007, vol. 43, p. 9 [Russ. J. Electrochem. (Engl. Transl.), vol. 43, p.].

    CAS  Google Scholar 

  36. Iwasita, T., Schmickler, W., and Schultze, J.W., Ber. Bunsen-Ges. Phys. Chem., 1985, vol. 89, p. 138.

    CAS  Google Scholar 

  37. Iwasita, T., Schmickler, W., Herrmann, J., and Vogel, U., J. Electrochem. Soc., 1983, vol. 130, p. 2026.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Doubova.

Additional information

Original Russian Text © L.M. Doubova, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 4, pp. 475–486.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doubova, L.M. Electron transfer through single-crystal silver electrode/n-decanthiol monolayer/NaNO3 solution interfaces. Russ J Electrochem 46, 450–460 (2010). https://doi.org/10.1134/S1023193510040105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193510040105

Key words

Navigation