Skip to main content
Log in

Concentration kinetics of intercalation systems

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The description of the concentration kinetics in the lattice fluid model used the local equilibrium representation of the distribution function of nonequilibrium states. A set of nonlinear differential-difference equations was formulated to describe the evolution of the concentration field in the system. The calculation of the correlation functions and chemical potentials applied the quasichemical approximation for nonequilibrium states. In the linear approximation, the differential equations were derived for the density region and order parameter, where the former naturally includes the kinetic diffusion coefficient and the latter includes the time of relaxation to the equilibrium state. The initial set of nonlinear difference equations was used to study the processes with high concentration gradients. The examples of these processes include a discharge of intercalation power source and phase stratification, provided that the average density in the system corresponds to unstable state in the field of the condensed-rarefied phase transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McKinnon, W.R. and Haering, R.R., Modern Aspects in Electrochemistry, New York: Plenum, 1983, p. 235.

    Google Scholar 

  2. Vorotyntsev, M.A. and Badiali, J.P., Electrochim. Acta, 1994, vol. 39, p. 289.

    Article  CAS  Google Scholar 

  3. Levi, M.D. and Aurbach, D., Electrochim. Acta, 1999, vol. 45, p. 167.

    Article  CAS  Google Scholar 

  4. Nauman, E.B. and He, D.Q., Chem. Eng. Sci., 2001, vol. 56, p. 1999.

    Article  CAS  Google Scholar 

  5. Montella, C., J. Electroanal. Chem., 2002, vol. 518, p. 61.

    Article  CAS  Google Scholar 

  6. Han, B.C., Van der Ven, A., Morgan, D., and Ceder, G., Electrochim. Acta, 2004, vol. 49, p. 4691.

    Article  CAS  Google Scholar 

  7. Lee, J.-W. and Pyun, S.-I., Electrochim. Acta, 2005, vol. 50, no. 9, p. 1777.

    Article  CAS  Google Scholar 

  8. Levi, M.D. and Aurbach, D., J. Solid State Electrochem., 2008, vol. 12, p. 409.

    Article  CAS  Google Scholar 

  9. Guo, Y.-G., Hu, Y.-S., Lee, J.-S., and Maier, J., Electrochem. Commun., 2006, vol. 8, p. 1179.

    Article  CAS  Google Scholar 

  10. Lauri, A.., Zapadinsky, E., Vehkamaki, H., and Kulmala, M., J. Chem. Phys., 2006, vol. 125, p. 164712.

    Article  Google Scholar 

  11. Rojas, M.J., Gimenez. M.C., Leiva E.P.M, Surf. Sci., 2005, vol. 581, p. L109.

    Article  CAS  Google Scholar 

  12. Bisquert, J., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 49.

    Article  CAS  Google Scholar 

  13. Bullejos, P.L., Tejada, J.A.J., Deen, M.J., Marinov, O., and Patars, W.R., J. Appl. Phys., 2008, vol. 103, p. 064504.

    Article  Google Scholar 

  14. Hogenberg, P.C. and Halperin, B.J., Rev. Mod. Phys., 1977, vol. 49, p. 435.

    Article  Google Scholar 

  15. Bray, A.J., Adv. Phys., 1994, vol. 43, p. 357.

    Article  Google Scholar 

  16. Gunton, J.D., J. Stat. Phys., 1999, vol. 95, p. 903.

    Article  Google Scholar 

  17. Toxvaerd, S., J. Chem. Phys., 2001, vol. 115, p. 8913.

    Article  CAS  Google Scholar 

  18. Rukenstein, E. and Djikaev, Y.S., Adv. Colloid Interf. Sci, 2005, vol. 118, p. 51.

    Article  Google Scholar 

  19. Wang, X. and Aoki, K., J. Electroanal. Chem., 2007, vol. 604, p. 101.

    Article  CAS  Google Scholar 

  20. Huot, J., New Trends in Intercalation Compounds for Energy Storage, Julien, C., Pereira-Ramos, J.P., and Momchilov, A, Eds., Dorderecht: Kluver, 2002, p. 109.

    Google Scholar 

  21. Lototsky, M.V., Yartys, V.A., Marinin, V.S., and Lototsky, N.M., J. Alloys Comp., 2003, vol. 356–357, p. 27.

    Article  Google Scholar 

  22. Stromme, M., Solid State Ionics, 2000, vol. 131, p. 261.

    Article  Google Scholar 

  23. Yao, T., Ozawa, N., Aikawa, T., and Yoshinaga, S., Solid State Ionics, 2004, vol. 175, p. 199.

    Article  CAS  Google Scholar 

  24. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (Solid Electrolytes), Moscow: Nauka, 1977.

    Google Scholar 

  25. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg, 2000.

  26. Plapp, M. and Gouyet, J.-F., Phys. Rev. E:, 1997, vol. 65, no. 1, p. 45.

    Article  Google Scholar 

  27. Nassif, R., Boughaleb, Y., Hekkuori, A., Gouyet, J.-F., and Colb, M., Eur. Phys. Journ. B, 1998, vol. 1, p. 453.

    Article  CAS  Google Scholar 

  28. Gouyet, J.-F., Plapp, M., Dietrich, W., and Maass, P., Adv. Phys., 2003, vol. 52, p. 523.

    Article  CAS  Google Scholar 

  29. Bogolyubov, N.N., Problemy dinamicheskoi teorii v statisticheskoi fizike (Problems of Dynamic Theory in Statistical Physics), Moscow: Gostekhizdat, 1946.

    Google Scholar 

  30. Bokun, G.S., Gapanjuk, D.V., Groda, Y.G., and Vikhrenko, V.S., Electrochim. Acta, 2005, vol. 50, p. 1725.

    Article  CAS  Google Scholar 

  31. Vikhrenko, V.S., Groda, Ya.G., and Bokun, G.S., Ravnovesnye i diffuzionnye kharakteristiki interkalyatsionnykh sistem na osnove reshetochnykh modelei (Equilibrium and Diffusion Characteristics of Intercalation Systems Based on Lattice Models), Minsk: Izd. BGTU, 2008.

    Google Scholar 

  32. Bokun, G.S., Groda, Y.G., Uebing, C., and Vikhrenko, V.S., Phys. A (Amsterdam), 2001, vol. 296, p. 83.

    Google Scholar 

  33. Eyring, H., Lin, S.H., and Lin, S.M., Basic Chemical Kinetics, New York: Wiley, 1980.

    Google Scholar 

  34. P. Hänggi, P., Talkner, P., and Borkovec, M., Rev. Mod. Phys., 1990, vol. 62, p. 251.

    Article  Google Scholar 

  35. Tovbin, Yu.K., Teoriya fiziko-khimicheskikh protsessov na granitse gaz-tverdoe telo (Theory of Physicochemical Processes on the Gas-Solid Interface), Moscow: Nauka, 1990.

    Google Scholar 

  36. Chumak, A.A. and Tarasenko A.A., Surf. Sci., 1980, vol. 91, p. 694.

    Article  CAS  Google Scholar 

  37. Zhdanov, V.P., Surf. Sci., 1985, vol. 149, p. L13.

    Article  CAS  Google Scholar 

  38. Tringides, M. and Gomer, R., Surf. Sci., 1986, vol. 166, p. 419.

    Article  CAS  Google Scholar 

  39. Uebing, C. and Gomer, R., J. Chem. Phys., 1991, vol. 95, p. 7626.

    Article  CAS  Google Scholar 

  40. Chumak, A.A. and Argyrakis, P., Phys. Rev. B, 2002, vol. 66.

  41. Groda, Ya.G., Argyrakis, P., Bokun, G.S., and Vikhrenko, V.S., Euro. Phys. J. B, 2003, vol. 32, p. 527.

    Article  CAS  Google Scholar 

  42. Allnatt, A.R. and Lidiard, A.B., Atomic Transport in Solids, Cambridge: Univ. Press, 2004.

    Google Scholar 

  43. Flangen, T.B and Oates, W.A, in Hydrogen in Intermetalic Compounds, Schlapbach, L., Ed., Berlin: Springer, 1988, p. 49.

    Google Scholar 

  44. Manchester, F.D., J. Less-Common Met., 1976, vol. 49, p. 1.

    Article  CAS  Google Scholar 

  45. Yao, T., Ozawa, N., Aikawa, T., and Yoshinaga, S., Solid State Ionics, 2004, vol. 175, p. 199.

    Article  CAS  Google Scholar 

  46. Kitel, Ch., Vvedenie v fiziku tverdogo tela (Introduction to Solid State Physics), Moscow: Mir, 1978.

    Google Scholar 

  47. Lifshitz, E.M. and Pitaevskii, L.P., Fizicheskaya kinetika (Physical Kinetics), Moscow: Nauka, 1979.

    Google Scholar 

  48. Cahn, J.W. and Hillard, J.E., J. Chem. Phys., 1958, vol. 28, p. 258.

    Article  CAS  Google Scholar 

  49. Nastar, M. and Clouet, E., Phys. Chem. Chem. Phys., 2004, vol. 6, p. 3611.

    Article  CAS  Google Scholar 

  50. Khuang, K., Statisticheskaya mekhanika (Statistical Mechanics), Moscow: Mir, 1966.

    Google Scholar 

  51. Smirnova, N.A., Kolloidn. Zh., 1979, vol. 41, p. 1152.

    CAS  Google Scholar 

  52. Elenin, G.G. and Krylov, V.V., Differents. Uravn, 1983, vol. 18, p. 1223.

    Google Scholar 

  53. Rott, L.A., Statisticheskaya teoriya molekulyarnykh sistem (Statistical Theory of Molecular Systems), Moscow: Nauka, 1979.

    Google Scholar 

  54. Vikhrenko, V.S., Groda, Y.G., and Bokun, G.S., Phys. Lett. A, 2001, vol. 286, p. 127.

    Article  CAS  Google Scholar 

  55. Kutner, R., Binder, K., and Kehr, K.W., Phys. Rev. B, 1983, vol. 28, p. 1847.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Vikhrenko.

Additional information

Original Russian Text © R.N. Lasovsky, G.S. Bokun, V.S. Vikhrenko, 2010, published in Elektrokhimiya, 2010, Vol. 46, No. 4, pp. 411–422.

Published by report at IX Conference on Fundamental Problems of Solid State Ionics, Chernogolovka, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lasovsky, R.N., Bokun, G.S. & Vikhrenko, V.S. Concentration kinetics of intercalation systems. Russ J Electrochem 46, 389–400 (2010). https://doi.org/10.1134/S102319351004004X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319351004004X

Key words

Navigation