Skip to main content
Log in

Electrochemical behavior of silver single-crystal electrodes in 1 M NaNO3 solution in the absence and in the presence of decanethiol films

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The surface properties of silver single-crystal faces (111) and (210) in 1 M NaNO3 aqueous solution in the absence and in the presence of monolayer n-decanethiol (DT) films are studied by the methods of cyclic voltammetry and electrochemical impedance using the meniscus contact technique. It is experimentally shown that, in the potential range from 0 to −0.5 V, the faradaic processes are absent and low currents are recorded on the unmodified silver surfaces. It is shown that the DT molecules, which are adsorbed on the nonoxidized surfaces of silver faces, spontaneously form (during 72 h) compact structurized films. The films are stable in the air and in the electrolyte solutions and totally block the surfaces of both faces. The impedance spectra, which were measured for each interface in a wide range of frequencies, are analyzed and interpreted. The measurements were performed by the use of the corresponding empirical equivalent circuits containing perfect and imperfect analogs of electrical circuits; complex nonlinear least squares (CNLS) regression method was applied for the calculations. The capacitance, ohmic resistance, and adsorbed monolayer thickness were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulman, A., An Introduction to Ultrathin Organic Films. New York: Acad. Press, 1991 (and references cited therein).

  2. Finklea, H.O, in Electroanalytical Chemistry, Bard, A. and Rubinstein, I., Eds., New York: Dekker, 1996, vol. 19, p. 109.

    Google Scholar 

  3. Janek, R.P., Fawcett, W.R., and Ulman, A., J. Phys. Chem. B, 1997, vol. 101, p. 8550.

    Article  CAS  Google Scholar 

  4. Protsailo, L.V. and Fawcett, W.R., Electrochim. Acta, 2000, vol. 20, p. 3497.

    Article  Google Scholar 

  5. Bachetta, M., Trasatti, S., Doubova, L., and Hamelin, A., J. Electroanal. Chem., 1986, vol. 200, p. 389.

    Article  CAS  Google Scholar 

  6. Trasatti, S. and Doubova, L.M., J. Chem. Soc., Faraday Trans., 1995, vol. 91, no. 19, p. 3311.

    Article  CAS  Google Scholar 

  7. Valette, G., J. Electroanal. Chem., 1981, vol. 122, p. 285; 1982, vol. 138, p. 37.

    CAS  Google Scholar 

  8. Vitanov, T. and Popov, A., SAEST Trans., 1975, vol. 10, p. 5.

    CAS  Google Scholar 

  9. Tkachenko, S.V., Fedorovich, N.V., and Danilov, A.I., Elektrokhimiya, 1998, vol. 34, p. 582 [Russ. J. Electrochem. (Engl. Transl.), vol. 34, p. 517].

    Google Scholar 

  10. Heinz, B. and Morgner, H., Surf. Sci., 1997, vol. 372, p. 100.

    Article  CAS  Google Scholar 

  11. Kang, J. and Rowntree, P.A., Langmuir, 2007, vol. 23, p. 509.

    Article  CAS  Google Scholar 

  12. Walczak, M.M., Chung, C., Stole, S.M., Wigrid, C.A., and Porter, M.D., J. Am. Chem. Soc., 1991, vol. 113, p. 2370.

    Article  CAS  Google Scholar 

  13. Wigrid, C., Chung, C., and Porter, M.D., J. Electroanal. Chem., 1991, vol. 310, p. 335.

    Article  Google Scholar 

  14. Godin, M., Williams, P.J., Tabard-Cossa, V., Laroche, O., Beaulieu, L.Y., Lennox, R.B., and Grütter, P., Langmuir, 2004, vol. 20, p. 7090.

    Article  CAS  Google Scholar 

  15. Hatchett, D.W., Uibel, R.H., Stevenson, K.J., Harris, J.M., and White, H.S., J. Am. Chem. Soc., 1998, vol. 120, p. 1062.

    Article  CAS  Google Scholar 

  16. Laibinis, P.E., Whitesides, G.M., Allara, D.L., Tao, Y.-T., Parikh, A.N., and Nuzzo, R.G., J. Am. Chem. Soc., 1991, vol. 113, p. 7152.

    Article  CAS  Google Scholar 

  17. Rieley, H. and Kendall, G.K., Langmuir, 1999, vol. 15, p. 8284.

    Google Scholar 

  18. Bryant, M.A. and Pemberton, J.E., J. Am. Chem. Soc., 1991, vol. 113, p. 7152.

    Article  Google Scholar 

  19. Kondoh, H., Tsukabayashi, H., Yokoyama, T., and Ohta, T., Surf. Sci., 2001, vol. 489, p. 20.

    Article  CAS  Google Scholar 

  20. Rodriguez, L.M., Gayone, J.E., Sánchez, E.A., Ascolani, A., Grizzi, O., Sánchez, M., Blum, B., Benitez, G., and Salvarezza, R.C., Surf. Sci., 2006, vol. 600, p. 2305.

    Article  CAS  Google Scholar 

  21. Mohtat, N., Byloos, M., Soucy, M., Morin, S., and Morin, M., J. Electroanal. Chem., 2000, vol. 484, p. 120.

    Article  CAS  Google Scholar 

  22. Chenakin, S.P., Heinz, B., and Morgner, H., Surf. Sci., 1998, vol. 397, p. 84.

    Article  CAS  Google Scholar 

  23. Schweizer, M. and Kolb, D.M., Surf. Sci., 2003, vol. 544, p. 93.

    Article  CAS  Google Scholar 

  24. Schweizer, M. and Kolb, D.M., J. Electroanal. Chem., 2004, vol. 564, p. 85.

    Article  CAS  Google Scholar 

  25. Brug, G.J., Sluyters-Rehbach, M., Sluyters, J.H., and Hamelin, A., J. Electroanal. Chem., 1984, vol. 181, p. 245.

    Article  CAS  Google Scholar 

  26. Doubova, L.M., Daolio, S., Pagura, C., De Battisti, A., and Trasatti, S., Elektrokhimiya, 2002, vol. 38, p. 25 [Russ. J. Electrochem. (Engl. Transl.), vol. 38, p. 20].

    Google Scholar 

  27. Safonov, V.A., Choba, M.A., and Oshkin, I.V., Elektrokhimiya, 2005, vol. 41, p. 857 [Russ. J. Electrochem. (Engl. Transl.), vol. 41, p. 763].

    Google Scholar 

  28. Doubova, L.M. and Trasatti, S. J. Electroanal. Chem., 1999, vol. 467, p. 164.

    Article  CAS  Google Scholar 

  29. Xue-Kun Xing and Scherson, D.A., J. Electroanal. Chem., 1986, vol. 199, p. 485.

    Article  Google Scholar 

  30. Germani, P.S., Pell, W.G., and Conway, B.E., Electrochim. Acta, 2004, vol. 49, p. 1775.

    Article  Google Scholar 

  31. Brug, G.J., Van den Eeeden, A.L.G., Sluyters-Rehbach, M., and Sluyters, J.H., J. Electroanal. Chem., 1984, vol. 176, p. 27.

    Google Scholar 

  32. Evstefeeva, Yu.E. and Khanova, L.A., Elektrokhimiya, 2005, vol. 41, p. 872 [Russ. J. Electrochem. (Engl. Transl.), vol. 41, p. 778].

    Google Scholar 

  33. Pleskov, Yu.V., Elektrokhimiya almaza (Electrochemistry of Diamond), Moscow: URSS, 2003 (and references cited therein).

    Google Scholar 

  34. Hamelin, A., Doubova, L., and Stoicoviciu, L., J. Electroanal. Chem., 1988, vol. 244, p. 133.

    Article  CAS  Google Scholar 

  35. Doubova, L.M., Elektrokhimiya [Russ. J. Electrochem. (Engl. Transl.)], (in press).

  36. Doubova, L.M. and Forlini, A., Elektrokhimiya [Russ. J. Electrochem. (Engl. Transl.)], (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Doubova.

Additional information

Original Russian Text © L.M. Doubova, 2009, published in Elektrokhimiya, 2009, Vol. 45, No. 10, pp. 1197–1210.

The paper was prepared for the issue devoted to M.I. Temkin centenary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doubova, L.M. Electrochemical behavior of silver single-crystal electrodes in 1 M NaNO3 solution in the absence and in the presence of decanethiol films. Russ J Electrochem 45, 1115–1126 (2009). https://doi.org/10.1134/S1023193509100024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193509100024

Key words

Navigation