Skip to main content
Log in

Problems and the progress made in modeling devices based on ionic materials

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Computational simulation techniques have been extensively used to investigate physical phenomena in semiconductor devices with similar techniques utilized for the study of their competitors, ionic devices [1]. This paper is focusing on models based on the physics of carrier transport referring also shortly to equivalent circuit models, a much celebrated tool in the area of ionics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, W.-F., Thanqadurai, V., and Weppner, W., Ionics, 2006, vol. 12, p. 1.

    Article  CAS  Google Scholar 

  2. Franceschetti, D.R., Adv. Sci. Technol., 2006, vol. 46, p. 120.

    Article  CAS  Google Scholar 

  3. Parish, W.R. and Newman, J., J. FJectrochem. Soc., 1970, vol. 117, p.43.

    Article  Google Scholar 

  4. Helmholtz, H., Ann. Phys. Chem., 1879, vol. 7, p. 337.

    Article  Google Scholar 

  5. Warburg, E., Ann. Phys. Chem., 1899, vol. 67, p. 493.

    Article  Google Scholar 

  6. Warburg, E., Ann. Phys., 1901, vol. 6, p. 125.

    Article  CAS  Google Scholar 

  7. Fricke, H., Phil. Mag., 1932, vol. 14, p. 310.

    CAS  Google Scholar 

  8. Randkes, E.B., Discuss. Faraday Soc., 1947, vol. 1, p. 11.

    Google Scholar 

  9. Sluyters-Rehbach, M. and Sluyters, J.H., in Electroanalytical Chemistry, vol. 4, Bard, A.J., Ed., New York: Marcel Dekker Inc., 1970, ch. 1, p. 1.

    Google Scholar 

  10. Geddes, L.A. and Baker, L.E., Principles of Applied Biomedical Instrumentation, New York: John Wiley and Sons, 1968.

    Google Scholar 

  11. Vergaz, R., Barrios, D., Sánchez-Pena, J.M., Pozo-Gonzalo, C., and Pomposo, J.A., Electron Devices, 2007, (Spanish Conference), p. 150.

  12. Bazant, M.Z., Thornton, K., and Ajdari, A., Phys. Rev, Ser. E, 2004, vol. 70, p. 021506.

    Article  Google Scholar 

  13. Freger, V. and Bason, S., J. Memhr. Sci., 2007, vol. 302, p. 1.

    Article  CAS  Google Scholar 

  14. Civalleri, P.P., Gilli, M., and Bonnin, M., Proceedings of the 2005 European Conference on Cirucit Theory and Design, Ireland, Cork, Finbarr O’Regan & Carsten Wegener, 2005, vol. 2, p. 233.

    Book  Google Scholar 

  15. Riess, I., J. Electrochem. Soc., 1981, vol. 128, p. 2077.

    Article  CAS  Google Scholar 

  16. Weppner, W., Proceedings of the 6th Riso International Symposium on Metallurgy and Materials Science, Poulsen, F.W., Hessel Andersen, N., Clausen, K., Skaarup, S., Toft Sorensen, O., Riso, Denmark, Poskilde, National Laboratory, 1985, p. 139.

    Google Scholar 

  17. Bukun, N.G., Tkacheva, N.S., and Leonova, L.S., Solid State Ionics, 1999, vol. 119, p. 199.

    Article  CAS  Google Scholar 

  18. Kahrton, V.V., Marques, F.M.B., and Atkinson, A., Solid Stale Ionics, 2004, vol. 174, p. 135.

    Article  Google Scholar 

  19. Petot-Ervas, G. and Petot, C., Recent Res. Devel. Solid Stale Ionics, 2004, vol. 2, p. 181.

    CAS  Google Scholar 

  20. Bredikhin, S., Abrosimova, G., Aronin, A., and Awano, M., Ionics, 2006, vol. 12, p. 33.

    Article  CAS  Google Scholar 

  21. Levchenko, A.V., Dobrovolsky, Yu.A., Bukun, N.G., Leonova, L.S., Zyubina, T.S., Neudachina, V.S., Yashina, L.V., Tarasov, A.B., Shatalova, T.B., and Shtanov, V.I., Rus. J. Electrochem., 2007, vol. 43, p. 552.

    Article  CAS  Google Scholar 

  22. Sakthivel, M. and Weppner, W., Phys., Ser. D: Appl. Phys., 2007. vol. 40, p. 7210.

    Article  CAS  Google Scholar 

  23. Murugan, R., Thangadurai, V., and Weppner, W., Appl. Phys., Ser. A, 2008, vol. 91, p. 615.

    Article  CAS  Google Scholar 

  24. Surble, S., Baldinozzi, G., Dollé, M., Gosset, D., Petot, C., and Petot-Ervas, G., Ionics, 2008, vol. 14, p. 33.

    Article  CAS  Google Scholar 

  25. van Roosbroeck, W., Bell Syst. Tech. J., 1950, vol. 29, p. 560.

    Google Scholar 

  26. Menon, M.M. and Landau, U., J. Electrochem. Soc., 1987, vol. 134, p. 2248.

    Article  CAS  Google Scholar 

  27. Jaffe, G. and LeMay, C.Z., J. Chem. Phys., 1953, vol. 21, p. 920.

    Article  CAS  Google Scholar 

  28. Naefe, H., J. Electrochem. Soc., 1997, vol. 144, p. 3922.

    Article  Google Scholar 

  29. Gummel, H.K., IEEE Trans. Electron Dev., 1964, vol. 11, p. 455.

    Article  Google Scholar 

  30. de Mari, A., Solid-State Electron., 1968, vol. 11, p. 1021.

    Article  Google Scholar 

  31. Macdonald, J.R., Solid State Electron., 1962, vol. 5, p. 11.

    Article  Google Scholar 

  32. Franceschetti, D.R. and Macdonald, J.R., J. Appl. Phys., 1978, vol. 50, p. 291.

    Article  Google Scholar 

  33. Kahn, D. and Maycock, J.N., Chem. Phys., 1967, vol. 46, p. 4434.

    CAS  Google Scholar 

  34. Brumleve, T.R. and Buck, R.P., J. Electroanal. Chem., 1978, vol. 90, p. 1.

    Article  CAS  Google Scholar 

  35. Kwon, H.I. and Ravaioli, U., Microelectron. J., 2006, vol. 37, p. 1047.

    Article  CAS  Google Scholar 

  36. Korfiatis, D.P., Potamianou, S.F., and Thoma, K.-A.Th., Ionics (in press).

  37. Tankovsky, N. and Syrakov, E., Ionics (in press).

  38. Kornyshev, A.A. and Vorotyntsev, M.A., Electrochim. Acta, 1981, vol. 26, p. 303.

    Article  CAS  Google Scholar 

  39. Bazant, M.M., Chu, K.T., and Bayly, B.J., SIAM J. Appl. Math., 2005, vo1. 65, no. 5, p. 1463.

    Article  CAS  Google Scholar 

  40. Liang, C.C., J. Electrochem. Soc., 1973, vol. 120, p. 1289.

    Article  CAS  Google Scholar 

  41. Despotuli, A.L. and Nikolaichik, V.I., Solid State Ionics, 1993, vol. 60, p. 275.

    Article  CAS  Google Scholar 

  42. Maier, J., Progr. Solid State Chem., 1995, vol. 23, p. 171.

    Article  CAS  Google Scholar 

  43. Wagner, C., J. Phys. Chem. Solids, 1972, vol. 33, p. 1051.

    Article  CAS  Google Scholar 

  44. Xu, C., Tang, G., Yang, D., Zhou, B., Pan, Q., Shao, L., and Wang, S., Chinese J. Sci. Instrument, 2007, vol. 28, p. 1311.

    Google Scholar 

  45. Reed, S.K., Madden, P.A., and Papadopoulos, A., J. Chem. Phys., 2008, vol. 128, p. 124701.

    Article  Google Scholar 

  46. Hamamoto, K., Fujishiro, Y., Awano, M., Katayama, S., and Bredikhin, S., Materials Res. Soc. Symp. Proc., 2005, vol. 835, p. 115.

    Google Scholar 

  47. Maier, J., Nature, 2005, vol. 4, p. 805.

    Article  Google Scholar 

  48. Awano, M., Fujishiro, Y., Hamamoto, K., Katayama, S., and Bredikhin, S., Int. J. Appl. Ceram. Tec., 2004, vol. 1, p. 277.

    CAS  Google Scholar 

  49. Schoonman, J., Solid State Ionics, 2003, vol. 157, p. 205.

    Article  Google Scholar 

  50. Simonov, V.I. and Shchedrin, B.M., Crystallography Rep., 2007, vol. 52, p. 743.

    Article  CAS  Google Scholar 

  51. Despotuli, A.L., Andreeva, A.V., and Rambabu, B., Ionics, 2005, vol. 11, p. 306.

    Article  CAS  Google Scholar 

  52. Andreeva, A.V. and Despotuli, A.L., Ionics, 2005, vol. 11, p. 152.

    Article  CAS  Google Scholar 

  53. Sata, N., Eberman, K., Eberl, K., and Maier, J., Nature, 2000, vol. 408, p. 946.

    Article  CAS  Google Scholar 

  54. Monty, C., Ionics, 2002, vol. 8, p. 461.

    Article  CAS  Google Scholar 

  55. Chadwiek, A.V., Phys. Stat. Sol., Ser. A, 2007, vol. 204, p. 631.

    Article  Google Scholar 

  56. Trellakis, A., Andlauer, T., and Vogl, P., LNCS, 2006, vol. 3743, p. 602.

    Google Scholar 

  57. Bisquert, J., Phys. Chem. Chem. Phys., 2008, vol. 10, p. 49.

    Article  CAS  Google Scholar 

  58. Danielewski, M. and Kucza, W., J. Surf. Sci. Nanotech., 2006, vol. 4, p. 464.

    Article  Google Scholar 

  59. Smith, G.D., Numerical Solutions of Partial Differential Equations, Finite Difference Methods (3rd Ed), Oxford: Clarendon Press, 1985.

    Google Scholar 

  60. Gockenbach, M.S., Understanding and Implementing the Finite Element Method, Cambridge University Press, 2006.

  61. Synka, J., The Finite Line Integration Method (FLIM)—A Fast Variant of Finite Element Modelling, Johann Radon Inst. for Computational and Appl. Math., Austrian Academy of Sciences, 2007.

  62. Varga, R.S., Matrix Iterative Analysis, NJ: Prentice-Hall Englewood Cliffs, 1962.

    Google Scholar 

  63. Bowen, W.R. and Sharif, A.O., J. Colloid Interf. Sci., 1997, vol. 187, p. 363.

    Article  CAS  Google Scholar 

  64. Qiu, F.L., Fisher, A.C., Walker, A.B., and Peter, L.M., Electrochem. Commun., 2003, vol. 5, p. 711.

    Article  CAS  Google Scholar 

  65. Finlayson, B.A., Numerical Methods for Problems with Moving Fronts, Seattle: Ravenna Park Publishing, 1992.

    Google Scholar 

  66. Wordelman, C.J., Aluru, N.R., and Ravaioli, U., Comput. Model. Eng. Sci., 2000, vol. 1, p. 123.

    Google Scholar 

  67. Aksamija, Z. and Ravaioli, U., J. Comput. Electron., 2006, vol. 5, p. 459.

    Article  Google Scholar 

  68. Li, G. and Aluru, R., J. Appl. Phys., 2004, vol. 96, p. 2221

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. -A. Th. Thoma.

Additional information

Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 6, pp. 693–698.

The article is published in the original.

Published by report at IX Conference “Fundamental Problems of Solid State Ionics”, Chernogolovka, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thoma, K.A.T. Problems and the progress made in modeling devices based on ionic materials. Russ J Electrochem 45, 652–656 (2009). https://doi.org/10.1134/S1023193509060056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193509060056

Key words

Navigation