Skip to main content
Log in

Tungsten oxide bronzes with alkali metals

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Single-phase samples of tungsten bronzes M x WO3 (M = K+, Rb+, Cs+) are prepared by solid-state synthesis. The reversibility of the M0.33WO3/M+-solid electrolyte interface is studied subject to the alkali metal nature and humidity over a wide temperature interval. The exchange current density at 24°C and 58%-relative humidity is 3.6 × 10−4 A/cm2 for the Rb0.33WO3/Rb+-solid electrolyte interface; 2.2 × 10−4 A/cm2 for the Cs0.33WO3/Cs+-solid electrolyte interface; and 1.3 × 10−4 A/cm2 for the K0.33WO3/K+-solid electrolyte interface. A correlation between the reversibility of the bronze|solid electrolyte interface, which is characterized by the exchange current density, and the rate of potential equilibration in sensor systems, where the bronze is a reference electrode, is revealed. Ionic component of the conductivity of the synthesized tungsten oxide bronzes is measured at a background of the predominant electronic conductivity. The ionic conductivity is three orders of magnitude lower than the electronic conductivity; it decreases in the series Rb0.33WO3 > Cs0.33WO3 > K0.33WO3, amounting to 2.3 × 10−2, 2.1 × 10−3, and 2 × 10−4 S cm−1, respectively. The working capacity of the M0.3WO3 bronzes as reference electrodes in sensor systems for carbon dioxide detection is evaluated. The plots of the cell potential vs. the CO2 concentration in the electrochemical cells are linear, their slopes (59 ± 1 mV/decade) are characteristic for one-electron process. The fastest response to changes in the CO2 concentration was obtained with the sensor system that used Rb0.33WO3 as reference electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wöhler, F., Ann. Chim. Phys., 1823, vol. 43, no. 2, p. 29.

    Google Scholar 

  2. Fouassier, C., Matejka, G., Reau, J.-M., and Hagenmuller, P., J. Solid State Chem., 1973, vol. 6, p. 532.

    Article  CAS  Google Scholar 

  3. Delmas, C., Maazaz, A., Fouassier, C., Reau, J.-M., and Hagenmuller, P., Mater. Res. Bull., 1979, vol. 14, p. 329.

    Article  CAS  Google Scholar 

  4. Molenda, J., Delmas, C., and Hagenmuller, P., Solid State Ionics, 1983, vol. 9/10, p. 431.

    Article  Google Scholar 

  5. Bukun, N.G., Ukshe, E.A., and Moskvina, E.I., Elektrokhimiya, 1993, vol. 29, p. 1478 [Russ. J. Elektrochem. (Engl. Transl.), vol. 29, p. 1292].

    Google Scholar 

  6. Bukun, N., Leonova, L., Ermolaeva, S., Tkacheva, N., and Dobrovolsky, Yu., Ionics, 1995, vol. 1, no. 3, p. 267.

    Article  CAS  Google Scholar 

  7. Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B., Solid State Ionics, 1981, vol. 3/4, p. 171.

    Article  Google Scholar 

  8. Nagaura, T. and Tazawa, K., Prog. Batteries Solar Cells, 1990, vol. 9, p. 20.

    Google Scholar 

  9. Dahn, J.R., Von Sacken, U., Jukov, M.R., and Al-Janaby, H., J. Electrochem. Soc., 1991, vol. 137, p. 2207.

    Article  Google Scholar 

  10. Delmas, C., Saadoune, I., and Rougier, A., J. Power Sources, 1993, vol. 43–44, p. 59.

    Google Scholar 

  11. Abraham, K.M., Goldman, J.I., and Dempsey, M.D., J. Electrochem. Soc., 1981, vol. 128, no. 12, p. 2493.

    Article  CAS  Google Scholar 

  12. Julien, C., Yebka, B., and Guesdon, J.P., Ionics, 1995, vol. 1, no. 4, p. 316.

    Article  CAS  Google Scholar 

  13. Hoffart, L. and Schleich, D.M., Ionics, 1995, vol. 1, nos. 5–6, p. 482.

    Article  CAS  Google Scholar 

  14. Brusetti, R., Haen, P., and Marcus, J., Phys. Rev. B, 2002, vol. 65, p. 144528.

    Article  Google Scholar 

  15. Skokan, M.R., Moulton, W.G., and Morris, R.C., Phys. Rev. B, 1979, vol. 20, no. 9, p. 3670.

    Article  CAS  Google Scholar 

  16. Magneli, A., Acta Chem. Scand., 1953, vol. 7, p. 315.

    Article  CAS  Google Scholar 

  17. Leonova, L.S., Bukun, N.G., Atovmyan, L.O., Levchenko, A.V., Tkacheva, N.S., and Dobrovol’skii, Yu.A., Elektrokhimiya, 2007, vol. 43, p. 487 [Russ. J. Elektrochem. (Engl. Transl.), vol. 43, p. 462].

    Google Scholar 

  18. Magneli, A. and Blomberg, B., Acta Chem. Scand., 1951, vol. 5, p. 372.

    Article  CAS  Google Scholar 

  19. Oi, J., Kishimoto, A., and Kudo, T., Solid State Chem., 1993, vol. 103, p. 176.

    Article  CAS  Google Scholar 

  20. Chebotin, V.N., Khimicheskaya Diffuziya v Tverdykh Telakh (Chemical Diffusion in Solids), Moscow: Nauka, 1989.

    Google Scholar 

  21. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (Solid Electrolytes), Moscow: Nauka, 1977.

    Google Scholar 

  22. Bukun, N.G., Ukshe, E.A., and Ukshe, A.E., Elektrokhimiya, 1993, vol. 29, p. 110 [Russ. J. Elektrochem. (Engl. Transl.), vol. 29, p. 100].

    CAS  Google Scholar 

  23. Bukun, N., Leonova, L., Ermolaeva, S., Nadkhina, O., and Dobrovolsky, Yu., Solid State Ionics, 2003, vol. 157, p. 215.

    Article  CAS  Google Scholar 

  24. Leonova, L., Dobrovolsky, Yu., Vinokurov, A., and Treglazov, I., J. Solid State Electrochem., 2003, vol. 7, p. 87.

    CAS  Google Scholar 

  25. Ukshe, E.A., Leonova, L.S., and Dobrovol’skii, Yu.A., Elektrokhimiya, 1993, vol. 29, p. 1455 [Russ. J. Elektrochem. (Engl. Transl.), vol. 29, p. 1274].

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Bukun.

Additional information

Original Russian Text © L.S. Leonova, A.V. Levchenko, E.I. Moskvina, N.S. Tkacheva, T.N. Aleshina, S.E. Nadkhina, A.M. Kolesnikova, Yu.A. Dobrovol’skii, N.G. Bukun, 2009, published in Elektrokhimiya, 2009, vol. 45, No. 5, pp. 629–636.

Published by report at IX Conference “Fundamental Problems of Solid State Ionics”, Vhernogolovka, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonova, L.S., Levchenko, A.V., Moskvina, E.I. et al. Tungsten oxide bronzes with alkali metals. Russ J Electrochem 45, 593–601 (2009). https://doi.org/10.1134/S1023193509050188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193509050188

Key words

Navigation