Skip to main content
Log in

Influence of the nature of membrane ionogenic groups on water dissociation and electrolyte ion transport: A rotating membrane disk study

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Polarization properties of electromembrane systems (EMS) consisting of a heterogeneous membrane, either the MK-41 phosphonic acid membrane or the MK-40 sulfonic acid membrane, and dilute sodium chloride solutions are investigated with the rotating membrane disk method. For the MK-41/0.01 M NaCl and MK-41/0.001 M NaCl EMS, effective ion transport numbers and partial current-voltage curves (CVC) are measured for sodium and hydrogen ions, and limiting-current densities and the diffusion-layer thickness are calculated as functions of the rotation rate of the membrane disk. With the theory of the overlimiting state of EMS, internal parameters of the systems under investigation—the diffusion-layer thickness, the space-charge distribution, and electric-field strengths in the diffusion layer and in the membrane—are calculated from experimentally obtained CVC and the dependence of effective transport numbers on current density. The catalytic influence of ionogenic groups on the dissociation rate of water is analyzed quantitatively. Partial CVC for H+ ions are calculated for the space-charge region in MK-40 and MK-41 membranes. Analogous CVC for bipolar membranes containing sulfonic acid and phosphonic acid groups are compared. The dissociation mechanism of water is the same in all EMS and is independent of the membrane type and the nature of the functional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kressman, T.R.E., and Tye, F.L., J. Electrochem. Soc., 1969, vol. 116, p. 25.

    Article  CAS  Google Scholar 

  2. Simons, R., Nature, 1979, vol. 280, p. 824.

    Article  CAS  Google Scholar 

  3. Greben’, V.P., Pivovarov, N.Ya., Kovarskii, N.Ya., and Nefedova, G.Z., Zh. Fiz. Khim., 1978, vol. 52, p. 2641.

    CAS  Google Scholar 

  4. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Elektrokhimiya, 1979, vol. 15, p. 1488 [Sov. Electrochem. (Engl. Transl.), 1979, vol. 15, p. 1282].

    CAS  Google Scholar 

  5. Simons, R., Electrochim. Acta, 1984, vol. 29, p. 151.

    Article  CAS  Google Scholar 

  6. Zabolotskii, V.I., Shel’deshov, N.V., and Gnusin, N.P., Usp. Khim., 1988, vol. 57, p. 1403 [Russ. Chem. Rev. (Engl. Transl.), 1988, vol. 57, pp. 801–808].

    CAS  Google Scholar 

  7. Timashev, S.F., and Kirganova, E.V., Elektrokhimiya, 1981, vol. 17, p. 440 [Sov. Electrochem. (Engl. Transl.), 1981, vol. 17, p. 366].

    CAS  Google Scholar 

  8. Umnov, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Elektrokhimiya, 1999, vol. 35, p. 982 [Russ. J. Electrochem. (Engl. Transl.), 1999, vol. 35, pp. 871–878].

    Google Scholar 

  9. Umnov, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Elektrokhimiya, 1999, vol. 35, p. 450 [Russ. J. Electrochem. (Engl. Transl.), 1999, vol. 35, pp. 411–416].

    Google Scholar 

  10. Shel’deshov, N.V., Ganych, V.V., and Zabolotskii, V.I., Elektrokhimiya, 1991, vol. 27, p. 15 [Sov. Electrochem. (Engl. Transl.), 1991, vol. 27, pp. 11–15].

    CAS  Google Scholar 

  11. Yaroslavtsev, A.B., Nikonenko, V.V., and Zabolotskii, V.I., Usp. Khim., 2003, vol. 72, p. 438 [Russ. Chem. Rev. (Engl. Transl.), 2003, vol. 72, pp. 393–421].

    Google Scholar 

  12. Nikonenko, V.V., Pis’menskaya, N.D., and Volodina, E.I., Elektrokhimya, 2005, vol. 41, p. 1351 [Russ. J. Electrochem. (Engl. Transl.), 2005, vol. 41, pp. 1205–1210].

    Google Scholar 

  13. Kharkats, Yu.I., Elektrokhimiya, 1985, vol. 21, p. 974 [Sov. Electrochem. (Engl. Transl.), 1985, vol. 21, pp. 917–920].

    CAS  Google Scholar 

  14. Sokirko, A.V., and Kharkats, Yu.I., Elektrokhimiya, 1988, vol. 24, p. 1657 [Sov. Electrochem. (Engl. Transl.), 1988, vol. 24, pp. 1531–1537].

    CAS  Google Scholar 

  15. Zabolotskii, V.I., and Nikonenko, V.V., Perenos ionov v membranakh (Ion Transport in Membranes), Moscow: Nauka, 1996.

    Google Scholar 

  16. Zabolotskii, V.I., Shel’deshov, N.V., and Sharafan, M.V., Elektrokhimiya, 2006, vol. 42, p. 1484 [Russ. J. Electrochem. (Engl. Transl.), 2006, vol. 42, pp. 1345–1351].

    Google Scholar 

  17. Zabolotskii, V.I., Sharafan, M.V., Shel’deshov, N.V., and Lovtsov, E.G., Elektrokhimiya, 2008, vol. 44, p. 155 [Russ. J. Electrochem. (Engl. Transl.), 2008, vol. 44, pp. 141–146].

    Google Scholar 

  18. Bobreshova, O.V., and Kulintsov, P.I., Zh. Fiz. Khim., 1987, vol. 61, p. 277.

    CAS  Google Scholar 

  19. Levich, V.G., Fiziko-khimicheskaya gidrodinamika, Moscow: Fizmatgiz, 1959 [Physicochemical Hydrodynamics (Engl. Transl.), Englewood Cliffs (NJ): Prentice-Hall, 1962].

    Google Scholar 

  20. Zabolotskii, V.I., Lebedev, K.A., and Lovtsov, E.G., Elektrokhimiya, 2006, vol. 42, p. 931 [Russ. J. Electrochem. (Engl. Transl.), 2006, vol. 42, pp. 836–846].

    Google Scholar 

  21. Zabolotskii, V.I., Lebedev, K.A., and Lovtsov, E.G., Elektrokhimiya, 2003, vol. 39, p. 1192 [Russ. J. Electrochem. (Engl. Transl.), 2003, vol. 39, pp. 1065–1072].

    Google Scholar 

  22. Berezina, N.P., Kononenko, N.A., Dvorkina, G.A., and Shel’deshov, N.V., Fiziko-khimicheskie svoistva ionoobmennykh materialov (Physicochemical Properties of Ion-Exchange Materials), Krasnodar: Kuban. Gos. Univ., 1999.

    Google Scholar 

  23. Onsager, L., J. Chem. Phys., 1934, vol. 2, p. 599.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Zabolotskii.

Additional information

Original Russian Text © V.I. Zabolotskii, M.V. Sharafan, N.V. Shel’deshov, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 10, pp. 1213–1220.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabolotskii, V.I., Sharafan, M.V. & Shel’deshov, N.V. Influence of the nature of membrane ionogenic groups on water dissociation and electrolyte ion transport: A rotating membrane disk study. Russ J Electrochem 44, 1127–1134 (2008). https://doi.org/10.1134/S1023193508100078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508100078

Key words

Navigation