Skip to main content
Log in

Cathodic polarization behavior of self-supporting polyaniline film electrode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The preparation method of a self-supporting doped-polyaniline film electrode and its open-circuit potential (OCP) in NaClO4 and Na2SO4 solutions with different pH value as well as cathodic polarization behavior have been investigated for the purpose of discussing the corrosion electrochemical behavior of polyaniline (PANI) in the acid solution. X-ray photoelectron spectroscopy (XPS) reveals that the lower pH corresponds to higher doping level of H+ in the film and a more positive OCP of PANI film electrode. OCP of the PANI film reached 0.35 V vs. SCE in 1M H2SO4, which is more positive than that of most metals, suggests that PANI would act as cathode when it couples with these metals. The cathodic polarization experiments indicate that the dominating cathodic polarization process of PANI is reversible doping and dedoping reaction and the reduction of dissolve oxygen has very little contribution to it. The potentiostatic current-time curves exhibit a large transient current density at initial stage of polarization, which should be attributed to the charge stored in the film and a relative less steady state current density at the subsequent stage of polarization, which is provided by its doping/dedoping equilibrium activity. Such a current characteristic of PANI electrode might be the force of PANI to provide the passivation protection for some active-passive metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DeBerry, D.W., J. Electrochem. Soc., 1985, vol. 132, p. 1022.

    Article  CAS  Google Scholar 

  2. Cook, A., Gabriel, A., Siew, D., and Laycock, N., Current Applied Physics, 2004, vol. 4, p. 133.

    Article  Google Scholar 

  3. Beck F., Haase, V., and Schroetz, M., AIP Conf. Proc., 1996, vol. 354, p. 115.

    Article  CAS  Google Scholar 

  4. Wessling, B., Adv. Mater, 1994, vol. 6, p. 226.

    Article  CAS  Google Scholar 

  5. Kinlen, P.J., Menon, V., and Ding, Y.W., J. Electrochem. Soc., 1999, vol. 146, p. 3690.

    Article  CAS  Google Scholar 

  6. Malik, M.A., Galkowski, M.T., Bala, H., Grzybowska, B., and Kulesza, P.J., Electrochim. Acta, 1999, vol. 44, p. 2157.

    Article  CAS  Google Scholar 

  7. Li P., Tan, T.C., and Lee, J.Y., Synth. Met., 1997, vol. 88, p. 237.

    Article  CAS  Google Scholar 

  8. Fahlman, M., Jasty, S., and Epstein, A.J., Synth. Met., 1997, vol. 85, p. 1323.

    Article  CAS  Google Scholar 

  9. Schauer, T., Joos, A., Dulog, L., and Eisenbach, C.D., Prog. Org. Coat., 1998, vol. 33, p. 20.

    Article  CAS  Google Scholar 

  10. Talo, A., Passiniemi, R., Forsen, O., and Ylasaari, S., Synth. Met., 1997, vol. 85, p. 1333.

    Article  CAS  Google Scholar 

  11. Ahmad, N. and MacDiarmid, A.G., Synth. Met., 1996, vol. 78, p. 103.

    Article  CAS  Google Scholar 

  12. Pud, A.A., Shapoval, G.S., Kamarchik, P., Ogurtsov, N.A., Gromovaya V.F., Myronyuk, I.E., and Kontsur, Yu.V., Synth. Met., 1999, vol. 107, p. 111.

    Article  CAS  Google Scholar 

  13. Lu, W.K., Elsenbaumer, R.L., and Wessling, B., Synth. Met., 1995, vol. 71, p. 2163.

    Article  CAS  Google Scholar 

  14. Santiago, E.I., Pereira, E.C., and Bulhoes, L.O.S., Synth. Met., 1998, vol. 98, p. 87.

    Article  CAS  Google Scholar 

  15. Fraoua, K., Delamar, M., and Andrieux, C.P., J. Electroanal. Chem., 1996, vol. 418, p. 109.

    Article  CAS  Google Scholar 

  16. Kang, E.T., Neoh, K.G., and Tan, K.L., Synth. Met., 1995, vol. 68, p. 141.

    Article  CAS  Google Scholar 

  17. Ping, Z., Neugebauer, H., and Neckel, A., Synth. Met., 1995, vol. 69, p. 161.

    Article  CAS  Google Scholar 

  18. Luthra, V., Singh, R., Gupta, S.K., and Mansingh, A., Current Applied Physics, 2003, vol. 3, p. 219.

    Article  Google Scholar 

  19. Lubert, K.-H. and Dunsch, L., Electrochim. Acta, 1998, vol. 43, p. 813.

    Article  CAS  Google Scholar 

  20. Neudeck, A., Petr, A., and Dunsch, L., Synth. Met., 1999, vol. 107, p. 143.

    Article  CAS  Google Scholar 

  21. Ping, Z., Nauer, G.E., Neugebauer, H., Theiner, J., and Neckel, A., Electrochim. Acta, 1997, vol. 42, p. 1693.

    Article  CAS  Google Scholar 

  22. Ray, A., Asturias, G.E., Kershner, D.L., MacDiarimid, A.G., and Epstein, A.J., Synth. Met., 1989, vol. 29, p. E141.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Zhu.

Additional information

Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 10, pp. 1205–1212.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Hu, J., Zhong, L. et al. Cathodic polarization behavior of self-supporting polyaniline film electrode. Russ J Electrochem 44, 1120–1126 (2008). https://doi.org/10.1134/S1023193508100066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508100066

Key words

Navigation