Skip to main content
Log in

Structural and mathematical models for pressure-dependent electrodiffusion of an electrolyte through heterogeneous ion-exchange membranes: Pressure-dependent electrodiffusion of NaOH through the MA-41 anion-exchange membrane

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Structural and mathematical models are proposed for describing electrolyte transport through heterogeneous anion-exchange membranes under conditions of pressure-dependent electrodiffusion. The idea that mesopores and macropores are present in the membrane provides the basis for the structural model. The Nernst-Planck equations with a convective term are used to describe ion transport in the solution filling the pores. Results of the solution to the mathematical problem and the experimental investigations demonstrate the possibility of decreasing the transport numbers of sodium ions through an anion-exchange membrane by applying a pressure gradient in the same direction as the electrolyte diffusion flux in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glueckauf, E., Proc. R. Soc. London, Ser. A, 1962, vol. 268, p. 350.

    Article  CAS  Google Scholar 

  2. Gnusin, N.P., Grebenyuk, V.D., and Pevnitskaya, M.V., Elektrokhimiya ionitov (The Electrochemistry of Ion-Exchange Resins), Novosibirsk: Nauka, 1972.

    Google Scholar 

  3. Gnusin, N.P., Zabolotskii, V.I., Nikonenko, V.V., and Meshechkov, A.I., Zh. Fiz. Khim., 1980, vol. 54, p. 1518.

    CAS  Google Scholar 

  4. Zabolotsky, V., and Nikonenko, V., J. Membr. Sci., 1993, vol. 79, p. 181.

    Article  CAS  Google Scholar 

  5. Vuoristo, M., Kontturi, K., Manzanares, Kh.A., Mafe, S., Elektrokhimiya, 1996, vol. 32, p. 192.

    Google Scholar 

  6. Koter, S., J. Membr. Sci., 2002, vol. 206, p. 201.

    Article  CAS  Google Scholar 

  7. Quenneville, E., and Buschmann, M., J. Membr. Sci., 2005, vol. 265, p. 60.

    Article  CAS  Google Scholar 

  8. Helfferich, F., Ion Exchange, New York: McGraw-Hill, 1962.

    Google Scholar 

  9. Lakshminarayanaiah, N., Transport Phenomena in Membranes, New York: Academic, 1969.

    Google Scholar 

  10. Schmid, G., J. Membr. Sci., 1998, vol. 150, p. 159.

    Article  CAS  Google Scholar 

  11. Mafe, S., Manzanares, J., and Pellicer, J., J. Membr. Sci., 1990, vol. 51, p. 161.

    Article  CAS  Google Scholar 

  12. Pevnitskaya, M.V., Starikovskii, L.G., Usov, V.Yu., and Borodikhina, L.I., Zh. Prikl. Khim., 1981, vol. 54, p. 2077.

    CAS  Google Scholar 

  13. Grebenyuk, V.D., and Ponomarev, M.I., Elektromembrannoe razdelenie smesei (Electromembrane Separation of Mixtures), Kiev: Naukova Dumka, 1992.

    Google Scholar 

  14. Berezina, N.P., Vol’fkovich, Yu.M., Kononenko, N.A., and Blinov, I.A., Elektrokhimiya, 1987, vol. 23, p. 912.

    CAS  Google Scholar 

  15. Pis’menskii, V.F., Zabolotskii, V.I., and Gnusin, N.P., Abstracts of Papers, Vsesoyuznoe soveshchanie “Primenenie elektrodializa v membranno-sorbstionnoi tekhnologii ochistki i razdeleniya veshchestv” (All-Union Conference “The Application of Electrodialysis in Membrane-Sorption Technology of Purification and Separation of Substances”) Cherkassy, 1984, p. 40.

  16. Aristov, I.V., Bobreshova, O.V., and Balavadze, E.M., Elektrokhimiya, 1996, vol. 32, p. 1112.

    Google Scholar 

  17. Lazarev, S.I., and Vyazov, S.A., Khim. Khim. Tekhnol., 2005, vol. 48, No. 3, p. 91.

    CAS  Google Scholar 

  18. Shel’deshov, N.V., Chaika, V.V., and Zabolotskii, V.I., Sorbts. khromatogr. protsessy, 2007, vol. 7, No. 1, p. 5.

    Google Scholar 

  19. Zhang, G., Grabowski, A., Strathmann, H., and Eigenberger, G., Abstracts of Papers, International Congress on Membranes and Membranes Processes 2005 (ICOM 2005), August 21–26, 2005, Seoul, South Korea, 2005, PW-311 (Abstract no. 695), p. 1407.

  20. Pivovarov, N.Ya., Geterogennye ionoobmennye membrany v elektrodializnykh protsessakh (Heterogeneous Ion-Exchange Membranes in Electrodialysis Processes), Vladivostok: Dal’nauka, 2001.

    Google Scholar 

  21. Chaika, V.V., Shel’deshov, N.V., and Zabolotskii, V.I., Abstracts of Papers, Rossiiskaya konferenstiya-shkola s mezhdunarodnym uchastieum (Russian Conference-School with International Participation), May 22–25, 2007, Krasnodar, 2007, p. 182.

  22. Mazin, V.M., Sobalev, V.D., Vol’fkovich, Yu.M., and Churaev, N.V., Elektrokhimiya, 1984, vol. 28, p. 953.

    Google Scholar 

  23. Gnusin, N.P., Berezina, N.P., and Demina, O.A., Zh. Prikl. Khim., 1986, vol. 57, p. 679.

    Google Scholar 

  24. Damaskin, B.B., and Petrii, O.A., Vvedenie v elektrokhimichesuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaway shkola, 1983.

    Google Scholar 

  25. Robinson, R.A., and Stokes, R.H., Electrolyte Solutions, 2nd ed. rev., London: Butterworths, 1965.

    Google Scholar 

  26. Bell, R.P., The Proton in Chemistry, 2nd ed., Ithaca, N.Y.: Cornell Univ. Press, 1973.

    Google Scholar 

  27. Mauro, A., Biohys. J., 1962, vol. 2, p. 179.

    CAS  Google Scholar 

  28. Fridrikhsberg, D.A., Kurs kolloidnoi khimii (Course of Colloid Chemistry), Leningrad: Khimiya, 1984.

    Google Scholar 

  29. Zabolotskii, V.I., and Nikonenko, V.V., Perenos ionov v membrannakh (Ion Transport in Membranes), Moscow: Nauka, 1996.

    Google Scholar 

  30. Landau, L.D., and Lifshitz, E.M., Gidronamika, vol. 6 of Teoreticheskaya fizika, Moscow: Nauka, 1986 [Fluid Mechanics (Engl. Transl.), 2nd ed. rev., vol. 6 of Course of Theoretical Physics, Oxford: Pergamon, 1987].

    Google Scholar 

  31. Shaposhnik, V.A., Sorosov. Obraz. Zh., 1999, No. 9, p. 27.

  32. Fary, A.D., Jr., The Diffusional Properties of Sodium Hydroxide, Ph.D. Dissertation, Institute of Paper Science and Technology, Appleton, Wis., 1966.

    Google Scholar 

  33. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1964, vol. 3.

    Google Scholar 

  34. Krasovskii, G.I., and Filaretov, G.F., Planirovanie eksperimenta (Planning the Experiment), Minsk: Beloruss. Gos. Univ., 1982.

    Google Scholar 

  35. Vol’fkovich, Yu.M., Elektrokhimiya, 1984, vol. 20, p. 665.

    CAS  Google Scholar 

  36. Grigorov, O.N., Koz’mina, Z.P., Markovich, A.V., and Fridrikhsberg, D.A., Elektrokineticheskie svoistva kapillyarnykh sistem (Electrokinetic Properties of Capillary Systems), Rebinder, P.A., Ed., Moscow: Akad. Nauk SSSR, 1956.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shel’deshov.

Additional information

Original Russian Text © N.V. Shel’deshov, V.V. Chaika, V.I. Zabolotskii, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 9, pp. 1116–1126.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shel’deshov, N.V., Chaika, V.V. & Zabolotskii, V.I. Structural and mathematical models for pressure-dependent electrodiffusion of an electrolyte through heterogeneous ion-exchange membranes: Pressure-dependent electrodiffusion of NaOH through the MA-41 anion-exchange membrane. Russ J Electrochem 44, 1036–1046 (2008). https://doi.org/10.1134/S1023193508090085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508090085

Key words

Navigation