Skip to main content
Log in

Generation of EMF in the rotating electrochemical cell

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Based on the literature data and calculated results, the emf, which is generated in the rotating electrochemical cell with the electrodes located at different distances from the rotation axis, is estimated in the cases that the system is or is not placed in the magnetic field. These data enable one to determine the conditions (the angular cell rotational rate, the magnetic induction, etc.), under which the required emf can be obtained without an external power source. The application of magnetic field enables one increase the emf from several mV to several volts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tolman, R.C., J. Am. Chem. Soc., 1911, vol. 33, p. 121.

    Article  Google Scholar 

  2. Grinnell, S.W. and Koenig, F.O., J. Am. Chem. Soc., 1942, vol. 64, p. 682.

    Article  CAS  Google Scholar 

  3. MacInnes, D.A. and Ray, B.R., J. Am. Chem. Soc., 1949, vol. 71, p. 2987.

    Article  CAS  Google Scholar 

  4. Ray, B.R. and MacInnes, D.A., Rev. Sci. Inst., 1949, vol. 20, p. 52.

    Article  CAS  Google Scholar 

  5. Ray, B.R., Beeson, D.M., and Crandall, H.F., J. Am. Chem. Soc., 1958, vol. 80, p. 1029.

    Article  CAS  Google Scholar 

  6. MacInnes, D.A., The Principles of Electrochemistry, New York: Reinhold Publ. Corp, 1939, chapter 9.

    Google Scholar 

  7. Johnson, J.S., Kraus, K.A., and Young, T.F., J. Am. Chem. Soc., 1954, vol. 76, p. 1436.

    Article  CAS  Google Scholar 

  8. Young, T.F., Kraus, K.A., and Johnson, J.S., J. Chem. Phys., 1954, vol. 22, p. 878.

    Article  CAS  Google Scholar 

  9. Kegeles, G. and Narasinga, Rao M.S., J. Am. Chem. Soc., 1958, vol. 80, p. 5721.

    Article  CAS  Google Scholar 

  10. Donnelly, T.H., J. Phys. Chem., 1966, vol. 70, p. 1862.

    Article  CAS  Google Scholar 

  11. Godschalk, W., J. Phys. Chem., 1968, vol. 72, p. 498.

    Article  CAS  Google Scholar 

  12. McBain, J.W., J. Am. Chem. Soc., 1936, vol. 58, p. 315.

    Article  CAS  Google Scholar 

  13. Gokhshtein, A.Ya., Abstracts of Papers, VIII Mendeleevskii s’ezd po obshchei i prikladnoi khimii. Referaty dokladov i soobshcheniiπ 13. Sektsiya teoreticheskoi i prikladnoi elektrokhimii (VIII Mendeleev Conf. on General and Applied Chemistry. Section of Theoretical and Applied Electrochemistry), Moscow: Akad. Nauk SSSR, 1958, p. 65.

    Google Scholar 

  14. Thomson, E., US Patent 1701346, 1929.

  15. Hoover, T.B., US Patent 3119759, 1964.

  16. Cheng, H., Scott, K., and Ramshaw, C., J. Electrochem. Soc., 2002, vol. 149, p. D172.

    Article  CAS  Google Scholar 

  17. Cheng, H., Scott, K., and Ramshaw, C., J. Appl. Electrochem., 2002, vol. 32, p. 831.

    Article  CAS  Google Scholar 

  18. Kuiken, H.K. and Tijburg, R.P., J. Electrochem. Soc., 1983, vol. 130, p. 1722.

    Article  CAS  Google Scholar 

  19. Tamminen, P., US Patent 4684585, 1987.

  20. Atobe, M., Hitose, S., and Nonaka, T., Electrochem. Commun., 1999, vol. 1, p. 278.

    Article  CAS  Google Scholar 

  21. Atobe, M., Sekido, M., Fuchigami, T., and Nonaka, T., Chem. Lett., 2003, p. 166.

  22. Abakumov, G.A. and Fedoseev, V.B., Ross. Khim. Zh., 1998, vol. 42, p. 36.

    CAS  Google Scholar 

  23. Kolli, R., Zh. Russ. Khim. Fiz. O-va, Fiz. O-va, 1875, vol. 7, p. 333.

    Google Scholar 

  24. Colley, R., Ann. Phys. Chem, 1876, vol. 157, p. 624.

    Article  Google Scholar 

  25. Des Coudres, T., Ann. Phys., 1893, vol. 49, p. 284.

    Article  Google Scholar 

  26. Des Coudres, T., Ann. Phys., 1896, vol. 57, p. 232.

    Google Scholar 

  27. Tolman, R.C., Proc. Am. Acad. Arts Sci., 1910, vol. 46, p. 109.

    Google Scholar 

  28. Koenig, F.O. and Grinnell, S.W., J. Phys. Chem., 1940, vol. 44, p. 463.

    Article  CAS  Google Scholar 

  29. Sandulov, D.B. and Doktorevich, V.A., Elektrokhimiya, 1984, vol. 20, p. 356.

    CAS  Google Scholar 

  30. Iwakura, C., Kitayama, M., Edamoto, T., and Tamura, H., Electrochim. Acta, 1985, vol. 30, p. 747.

    Article  CAS  Google Scholar 

  31. Ghoroghchian, J. and Bockris, J.O’M., Int. J. Hydrogen Energy, 1985, vol. 10, p. 101.

    Article  CAS  Google Scholar 

  32. Newman, J.S., Electrochemical Systems, New York: Prentice-Hall, 1973.

    Google Scholar 

  33. Pedersen, K.O., Z. Phys. Chem., 1934, vol. 170A, p. 41.

    Google Scholar 

  34. Drucker, C., Z. Phys. Chem., 1937, vol. 180A, p. 359.

    Google Scholar 

  35. Bograchev, D.A., Volgin, V.M., and Davydov, A.D., Elektrokhimiya, 2005, vol. 41, p. 1341 [Russ. J. Electrochem. (Engl. Transl.), vol. 41, p. 1197].

    Google Scholar 

  36. Feynman R.P., Leighton R.B., and Sands, M., The Feynman Lectures on Physics, London: Addison-Wesley, 1964, vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bograchev.

Additional information

Original Russian Text © D.A. Bograchev, A.D. Davydov, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 8, pp. 1029–1034.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bograchev, D.A., Davydov, A.D. Generation of EMF in the rotating electrochemical cell. Russ J Electrochem 44, 956–961 (2008). https://doi.org/10.1134/S1023193508080120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508080120

Key words

Navigation