Skip to main content
Log in

Multicycle chronoamperometry at rotating ring-disc electrode as a method of current separation into partial currents of silver ionization, Ag2O formation and its chemical dissolution in alkaline medium

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A method of multicycle chronoamperometry at rotating ring-disc electrode is suggested for experimental separation of the disc polarization current into its components that correspond to the substrate metal ionization, an oxide formation, and the oxide chemical dissolution. The method was validated by the example of the Ag|Ag2O|OH(H2O) system. At moderate anodic potentials of Ag-disc (0.48–0.51 V), silver active dissolution from open areas of its surface and through film’s pores dominates; the phase-forming current, hence, the current efficiency of this process drops down rapidly. At the potentials of the maximum at voltammograms (0.52–0.53 V), when the silver active dissolution current is suppressed, the phase-forming currents dominate; they exceed the oxide chemical dissolution rate significantly. The Ag2O film thickness increases rapidly, the current efficiency of the oxide formation process approaches 100% during the entire disc polarization period. The Ag(I)-oxide chemical dissolution rate constant practically does not depend on the anodic phase-formation potential; however, it somewhat varies depending on the oxide film thickness, thus reflecting changes in the film structure and, possibly, chemical composition (from AgOH to Ag2O).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hampson, N.A., Lee, J.B., and Morley, J.R., Electrochim. Acta, 1971, vol. 16, p. 637.

    Article  CAS  Google Scholar 

  2. Lopez, Teijelo M., Vilche, J.R., and Arvia, A.J., J. Electroanal. Chem., 1984, vol. 162, p. 207.

    Article  Google Scholar 

  3. Dignam, M.J., Barret, H.M., and Nagy, G.D., Can. J. Chem., 1969, vol. 47, p. 4253.

    Article  CAS  Google Scholar 

  4. Tilak, B.V., Perkins, R.S., and Kozlovska, H.A., Electrochim. Acta, 1972, vol. 17, p. 1447.

    Article  CAS  Google Scholar 

  5. Stonehart, P., Electrochim. Acta, 1968, vol. 13, p. 1789.

    Article  CAS  Google Scholar 

  6. Clarke, T.G., Hampson, N.A., and Lee, J.B., Ber. Bunsenges. Phys. Chem., 1969, vol. 73, p. 279.

    CAS  Google Scholar 

  7. Marichev, V.A., Zashch. Met., 2004, vol. 40, p. 184.

    Google Scholar 

  8. Savinova, E.R., Kraft, P., and Pettinger, B., J. Electroanal. Chem., 1997, vol. 430, p. 47.

    Article  CAS  Google Scholar 

  9. Hecht, D. and Strehblow, H., J. Electroanal. Chem., 1997, vol. 440, p. 211.

    CAS  Google Scholar 

  10. Savinova, E.R., Zemlyanov, D., and Pettinger, B., Electrochim. Acta, 2000, vol. 46, p. 175.

    Article  CAS  Google Scholar 

  11. Jovic, B.M. and Jovic, V.D., J. Serb. Chem. Soc., 2004, vol. 69, p. 153.

    Article  CAS  Google Scholar 

  12. Burstein, G.T. and Newman, R.C., Electrochim. Acta, 1980, vol. 25, p. 1009.

    Article  CAS  Google Scholar 

  13. Pyatnitskii, I.V. and Sukhan, V.V., Analiticheskaya khimiya serebra (Analytical Chemistry of Silver), Moscow: Nauka, 1975.

    Google Scholar 

  14. Droog, J.M.M., J. Electroanal. Chem., 1980, vol. 115, p. 225.

    Article  CAS  Google Scholar 

  15. Fleischman, M., Lax, D.J., and Thirsk, H.R., Trans. Faraday Soc., 1968, vol. 64, p. 3120.

    Article  Google Scholar 

  16. Alonso, C., Salvarezza, R.C., and Vara, J.M., Electrochim. Acta, 1990, vol. 35, p. 489.

    Article  CAS  Google Scholar 

  17. Ambrose, J. and Barradas, R.G., Electrochim. Acta, 1974, vol. 19, p. 781.

    Article  CAS  Google Scholar 

  18. Kuznetsova, T.A., Cand. Sci. (Chem.) Dissertation, Voronezh, 2002.

  19. Kuznetsova, T.A., Flegel’, E.V., and Vvedenskii, A.V., Zashch. Met., 2002, vol. 38, p. 379.

    Google Scholar 

  20. Hepel, M. and Tomkievich, M., J. Electrochem. Soc., 1984, vol. 131, p. 1288.

    Article  CAS  Google Scholar 

  21. Grushevskaya, S.N., Kuznetsova, T.A., and Vvedenskii, A.V., Zashch. Met., 2001, vol. 37, p. 346.

    Google Scholar 

  22. Vvedenskii, A.V. and Grushevskaya, S.N., Corros. Sci., 2003, vol. 45, p. 2391.

    Article  CAS  Google Scholar 

  23. Grushevskaya, S.N., Cand. Sci. (Chem.) Dissertation, Voronezh, 2000.

  24. Tarasevich, M.R., Khrushcheva, E.I., and Filinovskii, V.Yu., Vrashchayushchiisya diskovyi elektrod s kol’tsom (Rotating Ring-Disc Electrode), Moscow: Nauka, 1987.

    Google Scholar 

  25. Spravochnik po elektrokhimii (A Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  26. Brainina, Kh.Z., Inversionnaya Vol’tamperometriya Tverdykh Faz (Stripping Voltammetry of Solid Phases), Moscow: Khimiya, 1972.

    Google Scholar 

  27. Brainina, Kh.Z. and Neiman, E.Ya., Tverdofaznye reaktsii v elektroanaliticheskoi khimii (Solid-State Reactions in Electroanalytical Chemistry), Moscow: Khimiya, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vvedenskii.

Additional information

Original Russian Text © A.V. Vvedenskii, S.N. Grushevskaya, D.A. Kudryashov, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 8, pp. 1010–1018.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vvedenskii, A.V., Grushevskaya, S.N. & Kudryashov, D.A. Multicycle chronoamperometry at rotating ring-disc electrode as a method of current separation into partial currents of silver ionization, Ag2O formation and its chemical dissolution in alkaline medium. Russ J Electrochem 44, 937–945 (2008). https://doi.org/10.1134/S1023193508080090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508080090

Key words

Navigation