Skip to main content
Log in

Carbon nanotubes as a support for Pt-and Pt-Ru-catalysts of reactions proceeding in fuel cells

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Comparative study of two types of single-wall carbon nanotubes and standard carbon black Vulcan XC-72 as supports for catalysts of reactions proceeding in fuel cells is carried out. The nanotubes were prepared by arc method; they differed in the degree of their purifying from amorphous carbon and metal impurities. The structure and hydrophobic-hydrophilic properties of these carbon supports are studied by etalon porosimetry. The effect of the supports’ specific surface area on the deposited catalyst particles size and specific surface area is studied. The catalysts (Pt-Ru and Pt) were deposited from aqueous solutions of their salts. Platinum was also deposited by thermal decomposition of ethoxy clusters. It is shown that in methanol oxidation reaction at the Pt-Ru catalysts the current values per unit true surface area do not depend on the support nature, provided the catalyst loading is equal and the particle size is similar. When oxygen is reduced at platinum deposited onto purified nanotubes and the carbon black Vulcan XC-72, specific kinetic currents also are close to each other. It is shown that the degree of nanotubes purification and their structure affect the kinetics of this reaction significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, G., Chen, Y.-Sh., and Xu, B.-Q., Electrochem. Commun., 2005, vol. 7, p. 1237.

    Article  CAS  Google Scholar 

  2. Frackowiak, E., Lota, G., Cacciaguerra, T., and Beguin, F., Electrochem. Commun., 2006, vol. 8, p. 129.

    Article  CAS  Google Scholar 

  3. Li, X. and Hsing, I.-M., Electrochim. Acta, 2006, vol. 51, p. 5250.

    Article  CAS  Google Scholar 

  4. Guo, D.-J. and Li, H.-L., J. Power Sources, 2006, vol. 160, p. 44.

    Article  CAS  Google Scholar 

  5. Wang, C.-H., Shih, H.-C., Tsai, Y.-T., Du, H.-Y., Chen, L.-C., and Chen, K.-H., Electrochim. Acta, 2006, vol. 52, p. 1612.

    Article  CAS  Google Scholar 

  6. Prabhuram, J., Zhao, T.S., Liang, Z.X., and Chen, R., Electrochim. Acta, 2007, vol. 52, p. 2649.

    Article  CAS  Google Scholar 

  7. Chen, C.-C., Chen, C.-F., Chen, C.-M., and Chuang, F.-T., Electrochem. Commun., 2007, vol. 9, p. 159.

    Article  Google Scholar 

  8. Tsai, M.-C., Yeh, T.-K., and Tsai, C.-H., Electrochem. Commun., 2006, vol. 8, p. 1445.

    Article  CAS  Google Scholar 

  9. Wang, H.J., Yu, H., Peng, F., and Lv, P., Electrochem. Commun., 2006, vol. 8, p. 499.

    Article  CAS  Google Scholar 

  10. Alexeyeva, N., Laaksonen, T., Kontturi, K., Mirkhalaf, F., Schiffrin, D.J., and Tammeveski, K., Electrochem. Commun., 2006, vol. 8, p. 1475.

    Article  CAS  Google Scholar 

  11. Wang, X., Li, W., Chen, Z., Waje, M., and Yan, Y., J. Power Sources, 2006, vol. 158, p. 154.

    Article  CAS  Google Scholar 

  12. Shao, Y., Yin, G., Wang, J., Gao, Y., and Shi, P., J. Power Sources, 2006, vol. 161, p. 47.

    Article  CAS  Google Scholar 

  13. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.

    Google Scholar 

  14. Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, New York: Wiley, 1988.

    Google Scholar 

  15. Dribinskii, A.V., Tarasevich, M.R., and Kazarinov, V.E., Material Chemistry and Physics, 1989, vol. 22, p. 377.

    Article  CAS  Google Scholar 

  16. Takasu, Y., Kawaguchi, T., Sugimoto, W., and Murakami, Y., Electrochim. Acta, 2003, vol. 48, p. 3861.

    Article  CAS  Google Scholar 

  17. Rao, V., Simonov, P.A., Savinova, E.R., Plaksin, G.V., Cherepanova, S.V., Kryukova, G.N., and Stimming, U., J. Power Sources, 2005, vol. 145, p. 178.

    Article  CAS  Google Scholar 

  18. Krestinin, A.V., Kiselev, N.A., Raevskii, A.V., Ryabenko, A.G., Zakharov, D.N., and Zvereva, G.I., Eurasian Chem. Tech. J, 2003, vol. 5,(1), p. 7.

    CAS  Google Scholar 

  19. Krestinin, A.V., Raevskii, A.V., Kiselev, N.A., Zvereva, G.I., Zhigalina, O.M., and Kolesova, O.I., Chem. Phys. Lett., 2003, vol. 381, p. 529.

    Article  CAS  Google Scholar 

  20. Krestinin, A.V., Ross. Khim. Zh., 2004, vol. 48(5), p. 21.

    CAS  Google Scholar 

  21. Chiang, I.W., Brinson, B.E., Huang, A.Y., Willis, P.A., Bronikowski, M.J., Margrave, J.L., Smalley, R.E., and Hauge, R.H., J. Phys. Chem. B, 2001, vol. 105, p. 8297.

    Article  CAS  Google Scholar 

  22. Vol’fkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.S., and Shkol’nikov, E.I., Elektrokhimiya, 1980, vol. 16, p. 1620.

    CAS  Google Scholar 

  23. Volfkovich, Yu.M., Bagotzky, V.S., Sosenkin, V.E., and Blinov, I.A., Colloid Surfaces A: Physicochem. Engineering Aspects, 2001, vol. 187–188, p. 349.

    Article  Google Scholar 

  24. Bagotzky, V.S., Vol’fkovich, Yu.M., Kanevsky, L.S., Skundin, A.M., Broussely, M., Chenebault, P., and Caillaud, T., in Power Sources, vol. 15, Attewel, A. and Keily, T., Eds., New York: Academic, 1995, p. 59.

    Google Scholar 

  25. Tuseeva, E.K., Mikhailova, A.A., Khazova, O.A., and Kurtakis, K.-D., Elektrokhimiya, 2004, vol. 40, p. 1336.

    Google Scholar 

  26. Mikhailova, A.A., Pasynskii, A.A., Dobrokhotova, Zh.V., Grinberg, V.A., and Khazova, O.A., Elektrokhimiya, 2008, vol. 44, p. 326.

    Google Scholar 

  27. Schmidt, T.J., Gasteiger, H.A., Stab, G.D., Urban, P.M., Kolb, D.M., and Behm, R.J., J. Electrochem. Soc., 1998, vol. 145, p. 354.

    Google Scholar 

  28. Schmidt, T.J., Gasteiger, H.A., and Behm, R.J., J. Electrochem. Soc., 1999, vol. 146, p. 1296.

    Article  CAS  Google Scholar 

  29. Paulus, U.A., Schmidt, T.J., Gasteiger, H.A., and Behm, R.J., J. Electrochem. Soc., 2001, vol. 495, p. 134.

    CAS  Google Scholar 

  30. Majorova, N.A., Mikhailova, A.A., Khazova, O.A., and Grinberg, V.A., Elektrokhimiya, 2006, vol. 42, p. 382.

    Google Scholar 

  31. Grinberg, V.A., Kulova, T.L., Majorova, N.A., Dobrokhotova, Zh.V., Pasynskii, A.A., Skundin, A.M., and Khazova, O.A., Elektrokhimiya, 2007, vol. 43, p. 77.

    Google Scholar 

  32. Murthi, V.S., Urian, R.C., and Mukerjee, S., J. Phys. Chem. B, 2004, vol. 108, p. 11011.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Khazova.

Additional information

Original Russian Text © E.K. Tuseeva, N.A. Mayorova, V.E. Sosenkin, N.F. Nikol’skaya, Yu. M. Vol’fkovich, A.V. Krestinin, G.I. Zvereva, V.A. Grinberg, O.A. Khazova, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 8, pp. 955–964.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuseeva, E.K., Mayorova, N.A., Sosenkin, V.E. et al. Carbon nanotubes as a support for Pt-and Pt-Ru-catalysts of reactions proceeding in fuel cells. Russ J Electrochem 44, 884–893 (2008). https://doi.org/10.1134/S1023193508080028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508080028

Key words

Navigation