Skip to main content
Log in

Preparation and study of polyaniline-and multiwall-carbon-nanotube-based composite materials

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Polyaniline (PANI)-based composite materials containing 5 to 65 wt % of multi-wall carbon nanotubes (MCNT) are prepared. Their electrochemical characteristics are studied, in particular, the effect of the MCNT content in the composite on the composite and PANI specific capacitance. The increase in the composite capacitance, as well as the capacitance of the PANI being part of the composite, varies over the range from 5 to 25 wt %. This MCNT content is optimal for the preparing of a new MCNT-and PANI-based composite material. Over the above-given range, the increase in capacitance and the improving of conductivity are compromised at best. For a set of samples with varying MCNT content, the conductivity curve practically replicates the capacitance curve. The critical conductivity changes fall practically into the same range (5–30 wt %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Nature, 1991, vol. 354, p. 56.

    Article  CAS  Google Scholar 

  2. Iijima, S., Brabec, C., Maiti, A., and Bernholc, J., J. Chem. Phys., 1996, vol. 104, p. 2089; Overney, G., Zhong, W., and Tomanek, D., Z. Phys. D, 1993, vol. 27, p. 93.

    Article  CAS  Google Scholar 

  3. Mintmire, J.W., Dunlop, B.I., and Carter, C.T., Phys. Rev. Lett., 1992, vol. 73, p. 2468.

    Google Scholar 

  4. Ajayan, P.M., Stephan, O., Colliex, C., and Trauth, D., Science, 1994, vol. 265, p. 1212.

    Article  CAS  Google Scholar 

  5. Schadler, L.S., Giannaris, S.C., and Ajayan, P.M., Appl. Phys. Lett., 1998, vol. 73, p. 3842.

    Article  CAS  Google Scholar 

  6. Gian, D., Dickey, E.C., Andrews, R., and Rantell, T., Appl. Phys. Lett., 2000, vol. 76, p. 2868.

    Article  Google Scholar 

  7. Skotheim, T.A., Elsenbaumer, R.L., and Reinolds, J.R., Handbook of Conducting Polymer, New York: Marcel Dekker, 1997.

    Google Scholar 

  8. Cochet, M., Maser, W.K., Benito, A.M., Callejas, M.A., Martinez, Benoit, J.-M., Schreiber, J., and Chauvet, O., Chem. Commun., 2001, p. 1450.

  9. Deng, J., Ding, X., Zhang, W., Peng, Y., Wang, J., Long, X., Li, P., and Chan, A.S.C., Europ. Polymer J, 2002, vol. 38, p. 2497.

    Article  CAS  Google Scholar 

  10. Feng, W., Bai, X.D., Lian, Y.Q., Liang, J., Wang, X.G., and Yoshino, K., Carbon, 2003, vol. 41, p. 1551.

    Article  CAS  Google Scholar 

  11. Li, X.H., Wu, B., Huang, J.-E., Zhang, J., Liu, Z.-F., Li, H.-L., Carbon, 2003, vol. 41, p. 1670.

    Article  CAS  Google Scholar 

  12. Sainz, R., Benito, A.M., Martinez, M.T., Galindo, J.F., Sotres, J., Baro, A.M., Corraze, B., Chauvet, O., Dalton, A.B., Baughman, R.H., and Maser, W.K., Nanotecnology, 2005, vol. 16, p. 150.

    Article  Google Scholar 

  13. Wu, T.M., Lin, Y.-W., and Liao, C.-S., Carbon, 2005, vol. 43, p. 734.

    Article  CAS  Google Scholar 

  14. Khomenko, V., Frackowiak, E., and Beguin, F., Electrochim. Acta, 2005, vol. 50, p. 2499.

    Article  CAS  Google Scholar 

  15. Wu, T.-M. and Lin, Y.-W., Polymer, 2006, vol. 47, p. 3576.

    Article  CAS  Google Scholar 

  16. Rio, R.D., Zagal, J.H., Andrade, G.T., and Biaggio, S.R., J. Appl. Electrochem., 1999, vol. 29, p. 759.

    Article  Google Scholar 

  17. Downs, C., Nugent, J., Ajayan, P.M., Duquette, D.J., and Santhanam, K.S.V., Adv. Mater., 1999, vol. 11, p. 1028.

    Article  CAS  Google Scholar 

  18. Huang, J.E., Li, X.H., Xu, J.C., and Li, H.L., Carbon, 2003, vol. 41, p. 2731.

    Article  CAS  Google Scholar 

  19. Guo, M., Chen, J., Li, J., Tao, B., and Yao, S., Anal. Chim. Acta, 2005, vol. 532, p. 71.

    Article  CAS  Google Scholar 

  20. Wu, M., Snook, G.A., Guota, V., Shaffer, M., Fray, D.J., and Chen, G.Z., J. Mater. Chem., 2005, vol. 15, p. 2297.

    Article  CAS  Google Scholar 

  21. Sun, Y., Wilson, S.R., and Shuster, D.I., J. Am. Chem. Soc., 2001, vol. 123, p. 5348.

    Article  CAS  Google Scholar 

  22. O’Connel, M.J., Boul, P., and Ericson, L.M., Chem. Phys. Lett., 2001, vol. 342, p. 265.

    Article  Google Scholar 

  23. Yun, S. and Kim, J., J. Phys. D: Applied. Phys, 2006, vol. 39, p. 2580.

    Article  CAS  Google Scholar 

  24. Coleman, J.N., Curran, S., Dalton, A.B., Carthy, B.M., Blau, W., and Barklie, R.C., Synth. Met., 1999, vol. 102, p. 1174.

    Article  CAS  Google Scholar 

  25. Carthy, B.M., Coleman, J.N., Czerw, R., Dalton, A.B., Carol, D.L., and Blau, W.J., Synth. Met., 2001, vol. 121, p. 1225.

    Article  Google Scholar 

  26. Loutfy, R.O., Lowe, T.P., Moravsky, A.P., and Katagiri, S., Perspectives of Fullerene Nanothechnology, Dordrecht: Kluwer Academic, 2002, p. 35.

    Book  Google Scholar 

  27. Liu, S.W., Yue, J.., and Wehnmschulte, R.J., Nano Lett., 2002, vol. 2, p. 1439.

    Article  CAS  Google Scholar 

  28. Frackowiak, E., Jurewicz, K., Szostak, K., Delpeux, S., and Beguin, F., Fuel. Process. Technol, 2002, vol. 213, p. 77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Abalyaeva.

Additional information

Original Russian Text © V.V. Abalyaeva, G.V. Nikolaeva, O.N. Efimov, 2008, published in Elektrokhimiya, 2008, Vol. 44, No. 7, pp. 893–899.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abalyaeva, V.V., Nikolaeva, G.V. & Efimov, O.N. Preparation and study of polyaniline-and multiwall-carbon-nanotube-based composite materials. Russ J Electrochem 44, 828–834 (2008). https://doi.org/10.1134/S1023193508070094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508070094

Key words

Navigation