Skip to main content
Log in

Electrochemical formation of quantum-conductance Cu-metal nanobridges

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrodeposition of copper with formation of narrow nanobridge contacts was investigated. Stable quantum nanobridges (QNB) with ballistic conductance have been obtained by pulsed Cu deposition/electroetching on Cr interdigitated microelectrodes nanolithographed on a quartz wafer. The minimum quantum conductance associated with monatomic-wide constriction in the nanobridge was observed. Stepped differential conductance G = ng 0 (where g 0 is the minimum quantum conductance and n = 1, 2, 3, ...) was generally observed although fractional multiples of go were also found, likely due to the deviations of the nanowire junction geometry from linear configuration and reflection losses. In the layer-by-layer Cu deposition/etching technique employed for junction formation, the current amplification associated with interdigitated electrode pattern was utilized, which allowed us for easy electrochemical control with no need for special instrumentation. Quantum mechanical calculations of the electronic structure of Cu-QNB have been carried out using small-cluster approach with configuration 14-m-14, where m denotes the number of Cu atoms in the monatomic-wide bridge, and the base electrodes are simulated by clusters with 14 Cu atoms each. The calculations performed for m = 1 to 4, indicate that corrugations of electron density along the conductance channel virtually disappear for m = 3, whereas for even number of Cu atoms in the bridge, a distinct, very narrow constriction is formed in the center of the bridge. These results corroborate earlier findings for alkali metals, for which considerable differences between odd and even number of atoms in a monatomic-wide conductance channel have been reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avkam, A. and Ratner, M.A., Chem. Phys. Lett., 1974, vol. 29, p. 277.

    Article  Google Scholar 

  2. Lee, J., Govorov, A.O., Dulka, J., and Kotov, N.A., Nemo Lett., 2004, vol. 4, p. 2323.

    Article  CAS  Google Scholar 

  3. Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P., Science, 1998, vol. 281, p. 2013.

    Article  CAS  Google Scholar 

  4. Taton, T.A., Lu, G., and Mirkin, C.A., J. Am. Chem. Soc., 2001, vol. 123, p. 5164.

    Article  CAS  Google Scholar 

  5. Maye, M.M., Lou, Y., and Zhong, C.J., Langmuir, 2000, vol. 16, p. 7520.

    Article  CAS  Google Scholar 

  6. Xu, Q., Perez-Castillejos, R., Li, Z., and Whitesides, G.M., Nemo Lett., 2006, vol. 6, p. 2163.

    Article  CAS  Google Scholar 

  7. Drew, K., Girishkumar, G., Vinodgopal, K., and Kamat, P.V., J. Phys. Chem. B, 2005, vol. 109, p. 11851.

    Article  CAS  Google Scholar 

  8. Yang, G., Tan, L., Yang, Y., Chen, S., and Liu, G.Y., Surf. Sci., 2005. vol. 589, p. 129.

    Article  CAS  Google Scholar 

  9. Zhu, N., Chang, Z., He, P., and Fang, Y., Electrochim. Acta, 2006, vol. 51, p. 3758.

    Article  CAS  Google Scholar 

  10. Hepel, M., Kumarihamy, I., and Zhong, C.J., Electrochem. Commun., 2006, vol. 8, p. 1439.

    Article  CAS  Google Scholar 

  11. Motoyama, M., Fukunaka, Y., Sakka, T., Ogata, Y.H., and Kikuchi, S., J. Electroanal. Chem., 2005, vol. 584, p. 84.

    Article  CAS  Google Scholar 

  12. Canham, L.T., Appl. Phys. Lett., 1990, vol. 57, p. 1046.

    Article  CAS  Google Scholar 

  13. Melosh, N.A., Boukai, A., Diana, F., Gerardot, B., Badolato, A., Petroff, P.M., and Heath, J.R., Science, 2003, vol. 300, p. 112.

    Article  CAS  Google Scholar 

  14. van der Zande, B.M.I., Bohmer, M.R., Fokkink, L.G.J., and Schonenberger, C., Langmuir, 2000, vol. 16, p. 451.

    Article  Google Scholar 

  15. Heremans, J. and Thrush, C.M., Phys. Rev. B, 1999, vol. 59, p. 12579.

    Article  CAS  Google Scholar 

  16. Collins, P.G, Zettl, A., Bando, H., Thess, A., and Smalley, R.E., Science, 1997, vol. 278, p. 100.

    Article  CAS  Google Scholar 

  17. Biercuk, M.J., Mason, N., and Marcus, C.M., Nanolett., 2004, vol. 4, p. 1.

    CAS  Google Scholar 

  18. Kubatkin, S.E, Danilov, A.V, Olin, H., and Claeson, T., J. Low Temp. Phys., 2000, vol. 118, p. 307.

    Article  CAS  Google Scholar 

  19. Harman, T.C., Taylor, P.J., Walsh, M.P., and LaForge, B.E., Science, 2002, vol. 297, p. 2229.

    Article  CAS  Google Scholar 

  20. Timp, G., Chang, A.M., Mankiewich, P., Behringer, R., Cunningham, J.E., Chang, T.Y., and Howard, R.E., Phys. Rev. Lett., 1987, vol. 59, p. 732.

    Article  CAS  Google Scholar 

  21. Cui, Y. and Lieber, C.M., Science, 2001, vol. 291, p. 851.

    Article  CAS  Google Scholar 

  22. Bachtold, A., Hadley, P., Nakashini, T., and Dekker C., Science, 2001, vol. 294, p. 1317.

    Article  CAS  Google Scholar 

  23. Johnson, J.C., Yan, H., Schaller, R.D., Haber, L.H., Saykally, R.J., and Yang, P., J. Phys. Chem. B, 2001, vol. 105, p. 11387.

    Article  CAS  Google Scholar 

  24. Mujica, V., Kemp, M., and Ratner, M.A., J. Chem. Phys., 1994, vol. 101, p. 6849; 1994, vol. 101, p. 6856.

    Article  Google Scholar 

  25. Chen, J., Reed, M.A., Rawlett, A.M., and Tour, J.M., Science, 1999, vol. 286, p. 1550.

    Article  CAS  Google Scholar 

  26. Tao, N.J., Phys. Rev. Lett., 1996, vol. 76, p. 4066.

    Article  CAS  Google Scholar 

  27. Reed, M.A., Zhou, C., Muller, C.J., Burgin, T.P., and Tour, J.M., Science, 1997, vol. 278, p. 252.

    Article  CAS  Google Scholar 

  28. Cui, X.D., Primak, A., Zarate, X., Tomfohr, J., Sankey, O.F., More, A.L., Moore, T.A., Gust, D., Harris, G., and Lindsay, S.M., Science, 2001, vol. 294, p. 571.

    Article  CAS  Google Scholar 

  29. Ramachandran, G.K., Hopson, T.J., Rawlett, A.M., Nagahara, L.A., Primak, A., and Lindsay, S.M., Science, 2003, vol. 300, p. 1413.

    Article  CAS  Google Scholar 

  30. Stroh, C., Wang, H., Bash, R., Ashcroft, B., Nelson, J., Gruber, H., Lohr, D., Lindsay, S.M., and Hinterdorfer, P., PNAS, 2004, vol. 101, p. 12503.

    Article  CAS  Google Scholar 

  31. Monahan, J., Fosser, K., Gewirth, A.A., and Nuzzo, R.G., Lab on a Chip, 2002, vol. 1, p. 81.

    Article  Google Scholar 

  32. Hepel, M. and Mahoney, C., in Electrochemistry of Glass and Ceramics, Sundaram, S.K., Bickford, D.F., and Homyak, E.J., Eds. Westerville, OH: The Am. Ceramic Soc, 1999; Ceramic Trans., 1999; vol. 92, pp. 303–314.

    Google Scholar 

  33. Nazmutdinov, R.R., Glukhov, D.V., Tsirlina, G.A., and Petrii, O.A., Russ. J. Electrochem., 2003, vol. 39, p. 106.

    Google Scholar 

  34. Zhang, Z., Sun X., Dresselhaus, M.S., Ying, J.Y., and Heremans, J., Phys. Rev. B, 2000, vol. 61, p. 4850.

    Article  CAS  Google Scholar 

  35. Cherstiouk, O.V., Simonov, P.A., and Savinova, E.R., Electrochim. Acta, 2003, vol. 48, p. 3851.

    Article  CAS  Google Scholar 

  36. van Wees, B.J., van Houten, H., Beenakker, C.W.J., Williamson, J.G., Kouwenhoven, L.P., van der Marel, D., and Foxon, C.T., Phys. Rev. B, 1988, vol. 60, p. 848.

    Article  Google Scholar 

  37. Wharam, D.A., Thornton, T.J., Newbury, R., Pepper, M., Ahmed, H., Frost, J.E.F., Hasko, D.G., Peacock, D.C., Ritchie, D.A., and Jones, G.A.C., J. Phys. C: Solid State Phys., 1988, vol. 21, p. L209.

    Article  Google Scholar 

  38. Thornton, T.J., Pepper, M., Ahmed, H., Andrews, D., and Davies, G.J., Phys. Rev. Lett., 1986, vol. 56, p. 1198.

    Article  CAS  Google Scholar 

  39. Bell, A.E., Rao, K., and Swanson, L.W., J. Vac. Sci. Techol. B, 1988, vol. 6, p. 306.

    Article  CAS  Google Scholar 

  40. Morpurgo, A.F., Marcus, C.M., and Robinson, D.B., Appl. Phys. Lett., 1999, vol. 74, p. 2084.

    Article  CAS  Google Scholar 

  41. Li, C.Z., Bogozi, A., Huang, W., and Tao, N.J., Nanotechnology, 1999, vol. 10, p. 221.

    Article  Google Scholar 

  42. Li, C.Z., He, H.X., and Tao, N.J., Appl. Phys. Lett, 2000, vol. 77, p. 3995.

    Article  CAS  Google Scholar 

  43. Kreuzer, H.J. and Nath, K., Surf Sci., 1987, vol. 183, p. 591.

    Article  CAS  Google Scholar 

  44. Lang, N.D., Yacoby, A., and Imry, Y., Phys. Rev. Lett., 1989, vol. 63, p. 1499.

    Article  CAS  Google Scholar 

  45. Sharvin, Y.V., Zh. Elcsp. Teor. Fiz., 1965, vol. 48, p. 984.

    Google Scholar 

  46. Landauer, R., Philos. Mag., 1970, vol. 21, p. 863.

    Article  CAS  Google Scholar 

  47. Landauer, R., J. Phys. Condens. Matter, 1989, vol. 1, p. 8099.

    Article  Google Scholar 

  48. Büttiker, M., Phys. Rev. B, 1986, vol. 33, p. 3020.

    Article  Google Scholar 

  49. Costa-Kramer, J.L., Garcia, N., Garcia-Mochales, P., and Serena, P.A., Surf. Sci., 1995, vol. 342, p. L1144.

    Article  Google Scholar 

  50. Krans, J.M., Muller, C.J., Yanson, I.K., Govaert, T.C.M., Hesper, R., and van Ruitenbeek, J.M., Phys. Rev. B, 1993, vol. 48, p. 14721.

    Article  CAS  Google Scholar 

  51. Olesen, L., Laegsgaard, E., Stensgaard, L., Besenbacher, F., Schiotz, J., Stoltze, P., Jacobsen, K.W., and Norskov, J.K., Phys. Rev. Lett., 1994, vol. 72, p. 2251.

    Article  CAS  Google Scholar 

  52. Yanson, A.I., Bollinger, G.R., van den Brom, H.E, Agrait, N., and van Ruitenbeek, J.M., Nature, 1998, vol. 395, p. 783.

    Article  CAS  Google Scholar 

  53. Costa-Kramer, J.L., Phys. Rev. B, 1997, vol. 55, p. R4875.

    Article  CAS  Google Scholar 

  54. Oshima, H. and Miyano, K., Appl. Phys. Lett, 1998, vol. 73, p. 2203.

    Article  CAS  Google Scholar 

  55. Ono, T., Ooka, Y., and Miyajima, H., Appl. Phys. Lett., 1999, vol. 75, p. 1622.

    Article  CAS  Google Scholar 

  56. Egelhof, W.F., Gan, L., Ettedgui, H., Kadmon, Y., Powell, C.J., Chen, P.J., Shapiro, A.J., McMichael, R.D., Mallett, J.J., Moffat, T.P., and Stiles, M.D., J. Appl. Phys., 2004, vol. 95, p. 7554.

    Article  Google Scholar 

  57. Mallett, J.J., Svedberg, E.B., Ettedgui, H., Moffat, T.P., and Egelhof, W.F., Phys. Rev. B, 2004, vol. 70, p. 172406.

    Article  Google Scholar 

  58. Garcia, N., Przeslawski, J., and Sharonov, M., Surf. Sci., 1998, vol. 407, p. L665.

    Article  CAS  Google Scholar 

  59. Hepel, M., Electrochim. Acta, 2006, vol. 51, p. 5811.

    Article  CAS  Google Scholar 

  60. Kelly, M.J., Brown, R.J., and Smith, C.G., et al., Electronics Lett., 1989, vol. 25, p. 992.

    Article  Google Scholar 

  61. Atkins, P.W. and Friedman, R.S., Molecular Quantum Mechanics, Oxford, 1997.

  62. Hehre, W.J., Radon, L., Schleyer, P.R., and Pople, J.A., Ab-initio Molecular Orbital Theory, New York: Wiley, 1985.

    Google Scholar 

  63. Weast, R.C., Ed., Handbook of Chemistry and Physics, FL: CRC Press, Baca Raton, 1988.

    Google Scholar 

  64. Popić, J.P., Drazić, D.M., Electrichim. Acta, 2004, vol. 49, p. 4877.

    Google Scholar 

  65. Garcia-Mochales, P., Serena, P.A., Garcia, N., and Costa-Kramer, J.L., Phys. Rev. B, 1996, vol. 53, p. 10268.

    Article  CAS  Google Scholar 

  66. Mott, N.F., Metal-Insulator Transitions, London: Taylor and Francis, 1990.

    Google Scholar 

  67. Glazman, L.I., Lesovik, G.B., Khel’nitskii, D.E., and Shekhter, R.I., Pis’ma Zh. Eksp. Teor. Fiz., 1988, vol. 48, p. 218; JETP, 1988, vol. 48, p. 238.

    Google Scholar 

  68. Lang, N.D., Phys. Rev. B, 1987, vol. 36, p. 8173.

    Article  Google Scholar 

  69. Lang, N.D., Phys. Rev. B, 1988, vol. 37, p. 10395.

    Article  Google Scholar 

  70. Brandbyge, M., Phys. Rev. B, 2002, vol. 65, p. 165401.

    Article  Google Scholar 

  71. Kolb, D.M., Engelman, G. E., and Ziegler, J.C., Angew. Chem., 2000, vol. 39, p. 1123.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hepel.

Additional information

Published in Russian in Elektrokhimiya, 2008, Vol. 44, No. 6, pp. 716–729.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hepel, M. Electrochemical formation of quantum-conductance Cu-metal nanobridges. Russ J Electrochem 44, 663–675 (2008). https://doi.org/10.1134/S1023193508060062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193508060062

Key words

Navigation