Skip to main content
Log in

Study of the mechanism of redox transformations of sterically hindered N-aryl-o-iminoquinones

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The mechanisms of redox transformations of sterically hindered [1IBQ]-[3IBQ], 9,10-iminophenanthraquinone [4IFQ], and o-aminophenol [5AP] have been studied by cyclic voltammetry. It has been shown that the reduction process in tetrahydrofuran consists of two consecutive reversible steps leading to the formation of a radical anion and a dianion. In the case of acetonitrile, only the first redox process is detected, which involves the steps of protonation and electron addition resulting in the formation of a monoanion. Quantum-chemical calculations indicate a lower degree of participation of the six-membered nonaromatic carbon ring in the spin density delocalization in the o-iminosemiquinonate radical anions as compared to o-benzosemiquinonate radical anions. The oxidation of iminoquinones results in the formation of an unstable radical cation, which undergoes further chemical transformations. An increase in the acidity of a medium leads to the formation of protonated forms with the reduction potential being shifted anodically. The introduction of screening groups makes it possible to suppress side reactions of hydrolysis and cyclization of oxidized o-aminophenol [5AP] forms. Therefore, the major product of complete electrolysis is o-iminobenzoquinone [2IBQ].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nevodchikov, V.I., Abakumov, G.A., Cherkasov, V.K., and Razuvaev, G.A., J. Organomet. Chem., 1981, vol. 214, p. 119.

    Article  CAS  Google Scholar 

  2. Pierpont, C.G., Coord. Chem. Rev., 2001, vol. 216–217, p. 99.

    Article  Google Scholar 

  3. Pierpont, C.G., Coord. Chem. Rev., 2001, vol. 219–221, p. 415.

    Article  Google Scholar 

  4. Shults, D.A. and Bodnar, S.H., Inorg. Chem., 1999, vol. 38, p. 591.

    Article  Google Scholar 

  5. Kahn, O., Adv. Inorg. Chem., 1995, vol. 43, p. 179.

    Article  CAS  Google Scholar 

  6. Abakumov, G.A., Cherkasov, V.K., Nevodchikov, V.I., Kuropatov, V.A., Yee, G.T., and Pierpont, C.G., Inorg. Chem., 2001, vol. 40, p. 2434.

    Article  CAS  Google Scholar 

  7. Sheriff, T.S., Carr, P., and Piggott, B., Inorg. Chim. Acta, 2003, vol. 348, p. 115.

    Article  CAS  Google Scholar 

  8. Hitomi, Y., Ando, A., Matsui, H., Ita, T., Tanaka, T., Ogo, S., and Funabiki, T., Inorg. Chem., 2005, vol. 44, p. 3473.

    Article  CAS  Google Scholar 

  9. Kaim, W., J. Chem. Soc, Dalton Trans., 2003, p. 761.

  10. Mukherjee, S., Weyhermuller, T., Rentschler, E., Wieghardt, K., and Chaudhuri, P., Chem. Commun., 2003, p. 1828.

  11. Mukherjee, S., Weyhermuller, T., Bothe, E., Wieghardt, K., and Chaudhuri, P., J. Chem. Soc. Dalton Trans., 2004, p. 3842.

  12. Roginsky, V.A., Pisarenko, L.M., Bors, W., and Michel, C., J. Chem. Soc. Perkin Trans. 2, 1999, p. 871.

    Google Scholar 

  13. Roginsky, V.A. and Barsukova, T., J. Chem. Soc. Perkin Trans. 2, p. 1575

  14. Chaudhuri, P., Verani, C.N., Bill, E., Bothe, E., Weyhermuller, T., and Wieghardt, K., J. Am. Chem. Soc., 2001, vol. 123, p. 2213.

    Article  CAS  Google Scholar 

  15. Ward, M.D. and McCleverty, J.A., J. Chem. Soc, Dalton Trans., 2002, p. 275.

  16. Butin, K.P., Beloglazkina, E.K., and Zyk, N.V., Usp. Khim., 2005, vol. 74, no.6, p. 585.

    Google Scholar 

  17. Chun, H., Verani, C.N., Chaudhuri, P., Bothe, E., Bill, E., Weyhermuller, T., and Wieghardt, K., Inorg. Chem., 2001, vol. 40, p. 4157.

    Article  CAS  Google Scholar 

  18. Min, K.S., Weyhermuller, T., and Wieghardt, K., J. Chem. Soc., Dalton Trans., 2004, p. 178.

  19. Chun, H., Bill E., Weyhermuller, T., and Wieghardt, K., Inorg. Chem., 2003, vol. 42, p. 5612.

    Article  CAS  Google Scholar 

  20. Bill, E., Bothe, E., Chaudhuri, P., Chlopek, K., Herebian, D., Kokatam, S., Ray, K., Weyhermuller, T., Neese, F., and Wieghardt, K., Chem. Eur. J., 2005, no. 11, p. 204.

  21. Kokatam, S., Weyhermuller, T., Bothe, E., Chaudhuri, P., and Wieghardt, K., Inorg. Chem., 2005, vol. 44, p. 3709.

    Article  CAS  Google Scholar 

  22. Chambers, J.Q., The Chemistry of the Quinonoid Compounds, Patai, S. and Rappoport, Z., Eds., New York: Wiley, 1988, vol. 2, Chapter 12, p. 719.

    Google Scholar 

  23. Wilford, J.H., Archer, M.D., J. Electroanal. Chem., 1985, vol. 190, p. 271.

    Article  CAS  Google Scholar 

  24. Pedersen, S.U., Christensen, T.B., Thomasen, T., and Daasbjerg, K., J. Electroanal. Chem., 1998, vol. 454, p. 123.

    Article  CAS  Google Scholar 

  25. Okamoto, K., Ohkubo, K., Kadish, K.M., and Fukuzumi, S., J. Phys. Chem. A, 2004, vol. 108, p. 10405.

  26. Namazian, M., J. Mol. Struct. (Theochem), 2003, vol. 664–665, p. 273.

    Article  Google Scholar 

  27. Arai, K., Sato, T., Tamanouchi, H., Ohtomo, M., Takamura, K., Sueoka, T., and Kusu, F., Electrochim. Acta, 2000, vol. 45, p. 3029.

    Article  CAS  Google Scholar 

  28. Abreu, F.C., Lopes, A.C., and Goulart, M.O., J. Electroanal. Chem., 2004, vol. 562, p. 53.

    Article  Google Scholar 

  29. Magdesieva, T.V., Ivanov, P.S., Kravchuk, D.N., and Butin, K.P., Russ. J. Electrochem., 2003, vol. 39, p. 1245.

    Article  CAS  Google Scholar 

  30. Gordon, A. and Ford, R., The Chemist’s Companion, New York: Wiley, 1972. Translated under the title Sputnik khimika, Moscow: Mir, 1976.

    Google Scholar 

  31. Organic Electrochemistry, Baizer, M.M., Ed., New York: Marcel Dekker, 1973. Translated under the title Elektrokhimiya organicheskikh soedinenii, Moscow: Mir, 1976, 731 pp.

    Google Scholar 

  32. Organicheskaya elektrokhimiya, Baizer, M.M. and Lund, H., Eds., New York: Marcel Dekker, 1983. Translated under the title Organicheskaya elektrokhimiya, Moscow: Khimiya, 1988, 1024 pp.

    Google Scholar 

  33. Toussaint, O., Lerch, K., J. Biochemistry, 1987, vol. 26, p. 8567.

    Article  CAS  Google Scholar 

  34. Nogani, T., Hishida, T., Yamada, M., Mikawa, H., and Shirota, Y., Bull. Chem. Soc. Jpn., 1975, vol. 48, p. 3709.

    Article  Google Scholar 

  35. Poddel’sky, A.I., Cherkasov, V.K., Fukin, G.K., Bubnov, M.P., Abakumova, L.G., and Abakumov G.A., Inorg. Chim. Acta, 2004, vol. 357, p. 3632.

    Article  CAS  Google Scholar 

  36. Abakumov, G.A., Poddel’sky, A.I., Bubnov, M.P., Fukin, G.K., Abakumova, L.G., Ikorskii, V.N., and Cherkasov, V.K., Inorg. Chim. Acta, 2005, vol. 358, p. 3829.

    Article  CAS  Google Scholar 

  37. Poddel’sky, A.I., Cherkasov, V.K., Bubnov, M.P., Abakumova L.G., and Abakumov, G.A., J. Organomet. Chem., 2005, vol. 690, p. 145.

    Article  CAS  Google Scholar 

  38. Berberova, N.T., Smolyaninov, I.V., Okhlobystin, A.O., Letichevskaya, N.N., and Shinkar’, E.V., Ross. Khim. Zh., 2005, vol. XLIX, no. 5, p. 67.

    Google Scholar 

  39. Bhattacharya, S. and Pierpont, C.G., Inorg. Chem., 1992, vol. 31, p. 2020.

    Article  CAS  Google Scholar 

  40. Harmalker, S.P. and Sawyer, D.T., J. Org. Chem., 1984, vol. 49, p. 3579.

    Article  CAS  Google Scholar 

  41. Stallings, M.D., Morrison, M.M., and Sawyer, D.T., Inorg. Chem., 1981, vol. 20, p. 2655.

    Article  CAS  Google Scholar 

  42. Lehmann, M.W. and Evans, D.H., J. Electroanal. Chem., 2001, vol. 500, p. 12.

    Article  CAS  Google Scholar 

  43. Shinkar’, E.V., Okislitel’noe initsiirovanie reaktsii s uchastiem serovodoroda (Oxidative Initiation of Reactions with Participation of Hydrogen Sulfide), Cand. Sci. (Chem.), Saratov: N.G. Chernyshevskii Saratov State University, 1998, 143 pp.

    Google Scholar 

  44. Bott, A.W., Curt. Separations, 1999, vol. 18, p. 9.

    CAS  Google Scholar 

  45. Gosser, D.K., Cyclic Voltammetry: Simulation and Analysis of Reaction Mechanisms, N.Y.: VCH Publishers, 1994, 131 pp.

    Google Scholar 

  46. Budnikov, G.K., Maistrenko, V.N., and Vyaselev, M.R., Osnovy sovremennogo elektrokhimicheskogo analiza (Foundations of Modern Electrochemical Analysis), Moscow: Mir, Binom LZ, 2003, 447 pp.

    Google Scholar 

  47. Abakumov, G.A., Poddel’sky, A.I., Cherkasov, V.K., Fukin, G.K., Kurskii, Yu.A., and Abakumova, L.G., Angew. Chem. Int. Ed., 2005, vol. 44, p. 2767.

    Article  CAS  Google Scholar 

  48. Cherkasov, V.K., Abakumov, G.A., Grunova, E.V., Poddel’sky, A.I., Fukin, G.K., Baranov, E.V., Kurskii, Yu.A., and Abakumova, L.G., Chem. Eur. J., 2006, vol. 12, p. 3916.

    Article  CAS  Google Scholar 

  49. Bachler, V., Olbrich, G, Neese, F., and Wieghardt, K., Inorg. Chem., 2002, vol. 41, p. 4179.

    Article  CAS  Google Scholar 

  50. Wheeler, D.E., Rodrigues, J.H., and McCusker, J.K., J. Phys. Chem. A, 1999, vol. 103, p. 4101.

    Article  CAS  Google Scholar 

  51. Whalen, A.M., Bhattacharya, S., and Pierpont, C.G., Inorg. Chem., 1994, vol. 33, p. 347.

    Article  CAS  Google Scholar 

  52. Heilmann, O., Hornung, F.M., Fiedler, J., and Kaim, W., J. Organometal. Chem., 1999, vol. 589, p. 2.

    Article  CAS  Google Scholar 

  53. Kaim, W., Schwederski, B., Heilmann, O., and Hornung, F.M., Coord. Chem. Rev., 1999, vol. 182, p. 323.

    Article  Google Scholar 

  54. Mann, Ch. and Barnes K.K., Electrochemical Reactions in Nonaqueous Systems, New York: Marcel Dekker, 1970.

    Google Scholar 

  55. Keum, S.R., Gregory, D.H., and Bruice, T.C., J. Am. Chem. Soc., 1990, vol. 112, p. 2711.

    Article  CAS  Google Scholar 

  56. Vasconcellos, L.C., Oliveira, C.P., Castellano, E.E., Ellena, J., and Moreira, I.S., Polyhedron, 2001, vol. 20, p. 493.

    Article  CAS  Google Scholar 

  57. Tomoda, A., Shirasava, E., Nagao, S., Minami, M., and Yoneyama, Y., Biochem. J., 1984, vol. 222, p. 755.

    CAS  Google Scholar 

  58. Simandi, L.I., Simandi, T.M., May, Z., and Besenyei, G., Coord. Chem. Rev., 2003, vol. 245, p. 85.

    Article  CAS  Google Scholar 

  59. Simandi, T.M., May, Z., Szigyarto, I.Cs., and Simandi, L.I., J. Chem. Soc., Dalton Trans., 2005, p. 365.

  60. Varlamov, V.T., Izv. Ross. Akad. Nauk, Ser. Khim., 2004, no. 2, p. 293 [Russ. Chem. Bull., Int. Ed., 2004, no. 2, p. 306].

  61. Oyama, M., Higuchi, T., and Okazaki, S., J. Chem. Soc., Perkin Trans. 2, 2001, p. 1287.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Berberova.

Additional information

Original Russian Text © I.V. Smolyaninov, N.N. Letichevskaya, A.V. Kulakov, Ya.B. Aref’ev, K.P. Pashchenko, N.T. Berberova, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 10, pp. 1251–1264.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smolyaninov, I.V., Letichevskaya, N.N., Kulakov, A.V. et al. Study of the mechanism of redox transformations of sterically hindered N-aryl-o-iminoquinones. Russ J Electrochem 43, 1187–1199 (2007). https://doi.org/10.1134/S1023193507100138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507100138

Key words

Navigation