Skip to main content
Log in

Electrochemical hydrogen storage and usage aspects: Nickel electrode in acidic electrolyte

  • Short Communications
  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The conditions of electrochemical formation of nickel hydride are investigated. The electrochemical properties of different nickel-based materials (bulk, porous, foamed tapes) are examined to state the hydrogen adsorption/absorption phenomena and possibility to use them as a negative electrode in hydrogen devices (electrolyzers, rechargeable batteries, fuel cells). Surface activation of nickel materials are made by electroplating and etching methods. Thin palladium coating is used to prove the formation of nickel hydride during cathodic charging. Volt-amperometric and kinetic measurements show that not only palladium, but also activated nickel plays important role in the surface activation of electrode materials and promotion of hydrogen absorption in nickel substrate materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rifkin, J., The Hydrogen Economy, Tarcher, 2003.

  2. Wendt, H. and Plzak, V., in Electrochemical HydrogenTechnologies, Wendt, H., Ed., Amsterdam: Elsevier, 1990, p. 15.

    Google Scholar 

  3. Wu, B. and White, R.E., J. Electrochem. Soc., 2000, vol. 147, p. 902.

    Article  CAS  Google Scholar 

  4. Kleperis, J., Wójcik, G., Czerwinski, A., Skowroski, J., Kopczyk, M., and Beltowska-Brzezinska, M., J. Solid State Electrochem., 2001, vol. 5, p. 219.

    Article  Google Scholar 

  5. Hydrogen Technologies, http://freeenergynews.com/directory/hydrogen/index.html.

  6. Shih, R.J., and Perno, T.P., J. Alloys Compd., 2003, vol. 353, p. 283.

    Article  CAS  Google Scholar 

  7. Shina, R.-J., Oliver Su, Y., and Perno, T.P., submitted for publication in Int. J. Hydrogen Energy.

  8. Gabrielli, C., Grand, P.P., Lasia, A., and Perrot, H., J. Electrochem. Soc., 2004, vol. 151, p. A1925.

    Article  CAS  Google Scholar 

  9. Czerwinski, A., Kiersztyn, I., Grden, M., and Czapla, J., J. Electroanal. Chem., 1999, vol. 471, p. 190.

    Article  CAS  Google Scholar 

  10. Kleperis, J., Vaivars, G., Vitins, A., Lusis, A., and Galkin, A., in New Promising Electrochemical Systems for Rechargeable Batteries, Barsukov, V. and Beck, F., Eds., Kluwer Academic, 1996, p. 285.

  11. Sakai, T., Yuasa, A., Ishikawa, H., Miyamura, H., and Kuriyama, N., J. Less-Common Met., 1991, vol. 172–174, p. 1194.

    Article  Google Scholar 

  12. Baranowski, B., Pol. J. Chem., 2005, vol. 79, p. 789.

    CAS  Google Scholar 

  13. Chen, L. and Lasia, A., J. Electrochem. Soc., 1993, vol. 140, p. 2464.

    Article  CAS  Google Scholar 

  14. Devred, F., Hoffer, B.W., Sloof, W.G., Kooymana, P.J., van Langeveld, A.D., and Zandbergen, H.W., Appl. Catal., A, 2003, vol. 244, p. 291.

    Article  CAS  Google Scholar 

  15. Jung, M. and Kroeger, H.H., US Patent no. 3 409 474, 1968.

  16. Jobic, H., Internet J. Vibr. Spectroscopy, 2004, vol. 2.

  17. Switendick, A.C., Ber. Bunsen-Ges., 1972, vol. 76, p. 535.

    CAS  Google Scholar 

  18. Skala, L., Kunne, L., Fritsche, H.G., and Muller, H., Phys. Status Solidi B, 1982, vol. 114, p. 439.

    CAS  Google Scholar 

  19. Takano, A. and Ueda, K., J. Appl. Phys., 1992, vol. 32, p. 1217.

    Google Scholar 

  20. Hochard, F., Jobic, H., Massardier, J., and Renouprez, A., J. Mol. Catal. A, 1995, vol. 95, p. 165.

    Article  CAS  Google Scholar 

  21. Muscat, J.P. and Newns, D.M., Surf. Sci., 1979, vol. 80, p. 189.

    Article  CAS  Google Scholar 

  22. Richardson, T.J., Slack, J.L., Armitage, R.D., Kostecki, R., Farangis, and Rubin, D., App. Phys. Lett., 2001, vol. 78, p. 3047.

    Article  CAS  Google Scholar 

  23. Parker, S.F., Williams, P.J., Smith, T., Bortz, M., Bertheville, B., and Yvon, K., Chem. Phys., 2002, vol. 4, p. 1732.

    Article  CAS  Google Scholar 

  24. Dietz, R.E., Parisot, G.I., and Meixner, A.E., Phys. Rev. B, 1971, vol. 4, p. 2302.

    Article  Google Scholar 

  25. Mintz, T.S., Bhargava, Y.V., Thorne, S.A., Chopdekar, R., Radmilovic, V., Suzuki, Y., and Devinea, T.M., Electrochem. Solid-State Lett., 2005, vol. 8, p. D26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Elektrokhimiya, 2007, vol. 43, No. 5, pp. 624–629.

Based on the paper delivered at the 8th Meeting “Fundamental Problems of Solid-State Ionics, Chernogolovka (Russia), 2006.

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinberga, L., Hodakovska, J., Kleperis, J. et al. Electrochemical hydrogen storage and usage aspects: Nickel electrode in acidic electrolyte. Russ J Electrochem 43, 598–602 (2007). https://doi.org/10.1134/S1023193507050163

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507050163

Key words

Navigation