Skip to main content
Log in

Chemical and electrochemical processes in low-temperature superionic hydrogen sulfide sensors

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Effect the morphology of the surface of the working electrode (PbS) exerts on the sensitivity of a low-temperature potentiometric hydrogen sulfide sensor is studied. The sensor, which is based on electrochemical cell Na x WO3/NASICON/PbS, may be used for fast selective detection of hydrogen sulfide in air in natural conditions. It is demonstrated that the sensors with PbS that are deposited out of solution have a faster response than the pressed-to ones. The dependence of EMF on the hydrogen sulfide concentration for the former is linear in semilogarithmic coordinates. Thus difference is explained by the microstructure of the lead sulfide layer. It is shown that the lead sulfide interaction with hydrogen sulfide involves a reversible partial reduction of sulfur and lead at the surface. The species that form in so doing contain sulfur atoms in lower oxidation degrees (poly-and oligo sulfides, sulfite). A mechanism of the sensor operation is proposed on the basis of data yielded by experiment and quantum-chemical simulation. The mechanism includes reversible transport of hydrogen from sulfur atoms to oxygen atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sutherland, F.M., Etsell, T.H., and Eastman, C.D., Solid State Ionics, 1992, vol. 53–56, p. 68.

    Article  Google Scholar 

  2. Yan, Y.T., Miura, N., and Yamazoe, N., Chem. Lett., 1994, vol. 9, p. 1753.

    Article  Google Scholar 

  3. Miura, N., Yan, Y.T., Lu, G.Y., and Yamazoe, N., Sens. Actuators, B 1996, vol. 34, p. 367.

    Article  Google Scholar 

  4. Vandecruys, F., Stephen, R., De Schutter, F., and Vangrunderbeek, J., Sens. Actuators, B 1997, vol. 43, p. 230.

    Article  Google Scholar 

  5. Vandecruys, F., Brauns, E., Engelen, W., de Schutter, F., and Vangrunderbeek, J., Solid State Ionics, 1998, vol. 112, p. 95.

    Article  CAS  Google Scholar 

  6. Vangrunderbeek, J., Vandecruys, F., and Kumar, R.V., Sens. Actuators, B 1999, vol. 56, p. 129.

    Article  Google Scholar 

  7. Yu, C.B., Wang, Y.J., Hua, K.F., Xing, W., and Lu, T.H., Sens. Actuators, B 2002, vol. 86, p. 259.

    Article  Google Scholar 

  8. Wang, Y.R., Yan, H.Q., and Wang, E., Sens. Actuators, B 2002, vol. 87, p. 115.

    Article  Google Scholar 

  9. Kirchnerova, J., Bale, C.W., and Skeaff, J.M., Solid State Ionics, 1996, vol. 91, p. 257.

    Article  CAS  Google Scholar 

  10. Nagashima, K. and Shigetaka, S., Bunseki Kagaku, 1983, vol. 32, p. 219.

    CAS  Google Scholar 

  11. Leonova, L., Dobrovolsky, Yu., Ukshe, E., Tkacheva, N., and Gabrel’yan, A., Metrologiya, 1991, vol. 6, p. 45.

    Google Scholar 

  12. Dobrovolsky, Yu., Leonova, L., and Vakulenko, A., Solid State Ionics, 1996, vol. 86–88, p. 1017.

    Article  Google Scholar 

  13. Dobrovolsky, Yu.A., Leonova, L.S., and Vakulenko, A.M., Elektrokhimiya, 1996, vol. 32, p. 438.

    Google Scholar 

  14. Bukun, N., Dobrovolsky, Y., Levchenko, A., Leonova, L., and Osadchii, E., J. Solid State Electrochem., 2003, vol. 7, p. 122.

    CAS  Google Scholar 

  15. Bukun, N.G., Domashnev, I.A., Moskvina, E.I., and Ukshe, E.A., Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, p. 443.

    CAS  Google Scholar 

  16. Handbuch der Praeparativen Anorganishen Chemie, Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1978, vol. 2.

    Google Scholar 

  17. Laajalehto, K., Kartio, I., and Suoninen, E., Int. J. Miner. Process., 1997, vol. 51, p. 163.

    Article  CAS  Google Scholar 

  18. Nowak, P. and Laajalehto, K., App. Surf. Sci., 2000, vol. 157, p. 101.

    Article  CAS  Google Scholar 

  19. Gaussian 98, Pittsburg (PA): Gaussian, Inc., 1998, revision A.

  20. Ravindra, N.M. and Srivastava, V.K., Phys. Status Solidi A, 1980, vol. 58, p. 311.

    Article  CAS  Google Scholar 

  21. Zyubina, T.S., Neudachina, V.S., Yashina, L.V., and Shtanov, V.I., Surf. Sci., 2005, vol. 574, p. 52.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Levchenko, Yu.A. Dobrovolsky, N.G. Bukun, L.S. Leonova, T.S. Zyubina, V.S. Neudachina, L.V. Yashina, A.B. Tarasov, T.B. Shatalova, V.I. Shtanov, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 5, pp. 584–592.

Based on the paper delivered at the 8th Meeting “Fundamental Problems of Solid-State Ionics”, Chernogolovka (Russia), 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levchenko, A.V., Dobrovolsky, Y.A., Bukun, N.G. et al. Chemical and electrochemical processes in low-temperature superionic hydrogen sulfide sensors. Russ J Electrochem 43, 552–560 (2007). https://doi.org/10.1134/S1023193507050084

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507050084

Key words

Navigation