Skip to main content
Log in

Surface disordering of classic and superionic crystals: A description in the framework of the stern model

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The surface potential (φS) in ionic crystals: binary compounds of the type NaCl and superionic oxygen conductors of the type M IV1 − c Me IIIc O2 − c/2 are calculated with the aid of the Stern model. Effect of the energy of formation of defects, concentration of accessible sites (N S), and concentration of admixtures on the temperature dependences of φS(T) is studied. Instances of high and low potentials are analyzed. It is demonstrated that the surface potential increases proportionally to the difference between the adsorption energies of individual defects, provided the absolute value of |ΔG i| (ΔG i < 0) and concentration N S are sufficiently large. Values of isoelectric temperatures in NaCl crystals doped with admixtures of other valence are calculated. An attempt is undertaken to describe experimental data for silver halides with the aid of the model. Calculations of the surface potential in superionic oxygen conductors show that increasing concentration of surface vacancies is accompanied by segregation of the admixture cations in the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (A Kinetic Theory of Fluids), Moscow: Akad. Nauk SSSR, 1945.

    Google Scholar 

  2. Grimley, T.V., Proc. R. Soc., 1950, vol. A201, p. 40; Lehovec, K., J. Chem. Phys., 1953, vol. 21, p. 1123.

    ADS  CAS  Google Scholar 

  3. Kliever, K.L. and Koehler, J.S., Phys. Rev., A, 1965, vol. 140, p. 1226; Kliever, K.L., J. Phys. Chem. Solids, 1965, vol. 27, p. 705.

    ADS  Google Scholar 

  4. Urusovskaya, A.A., Usp. Fiziol. Nauk, 1968, vol. 96, p. 39.

    CAS  Google Scholar 

  5. Whitworth, R.W., Adv. Phys., 1975, vol. 24, p. 203.

    Article  ADS  CAS  Google Scholar 

  6. Tallon, J.L., Buckley, R.C., Staines, M.P., and Robinson, W.H., Philos. Mag. B, 1985, vol. 6, p. 635.

    Google Scholar 

  7. Poeppel, R.B. and Blakely, J.M., Surf. Sci., 1969, vol. 15, p. 507.

    Article  CAS  Google Scholar 

  8. Blakely, J.M. and Danyluk, S., Surf. Sci., 1973, vol. 40, p. 37.

    Article  CAS  Google Scholar 

  9. Macdonald, J.R., Franceschetti, D.R., and Lehnen, A.R., J. Chem. Phys., 1980, vol. 73, p. 5272.

    Article  ADS  CAS  Google Scholar 

  10. Maier, J., J. Electrochem. Soc., 1987, vol. 134, p. 1524.

    Article  CAS  Google Scholar 

  11. Maier, J., Prog. Solid State Chem., 1995, vol. 23, p. 171.

    Article  CAS  Google Scholar 

  12. Lifshits, L.M. and Geguzin, Ya.E., Fiz. Tverd. Tela, 1965, vol. 7, p. 62.

    CAS  Google Scholar 

  13. Chebotin, V.N. and Solov’eva, L.M., Elektrokhimiya, 1975, vol. 11, p. 1189.

    CAS  Google Scholar 

  14. Chebotin, V.N., Solov’eva, L.M., and Remez, I.D., Elektrokhimiya, 1975, vol. 11, p. 1198.

    CAS  Google Scholar 

  15. Ukshe, E.A. and Bukun, N.G., Tverdye elektrolity (The Solid Electrolytes), Moscow: Nauka, 1977.

    Google Scholar 

  16. Stern, O., Z. Electrochem., 1924, vol. 30, p. 508.

    CAS  Google Scholar 

  17. Jamnik, J., Maier, J., and Pejovnik, S., Solid Sate Ionics, 1995, vol. 75, p. 51.

    Article  CAS  Google Scholar 

  18. Khanft, A.V., Zhogin, I.L., and Kriger, V.G., Poverkhnost, 1990, vol. 6, p. 65.

    Google Scholar 

  19. Khaneft, A.V., Zh. Fiz. Khim., 1992, vol. 66, p. 3037.

    CAS  Google Scholar 

  20. Khaneft, A.V. and Kriger, V.G., Zh. Fiz. Khim., 1993, vol. 64, p. 2424.

    Google Scholar 

  21. Wonnell, S.K. and Slifkin, L.M., Solid State Ionics, 1995, vol. 75, p. 101.

    Article  CAS  Google Scholar 

  22. Kroeger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North-Holland, 1964.

    Google Scholar 

  23. Kleitz, M., Dessemond, L., and Steil, M.C., Solid State Ionics, 1995, vol. 75, p. 107.

    Article  CAS  Google Scholar 

  24. Badwal, S.P.S., Solid State Ionics, 1995, vol. 76, p. 67.

    Article  CAS  Google Scholar 

  25. Burgraaf, A.J. and Winnubst, A.J.A., in Surface and Near-Surface Chemistry of Oxide Materials, Novotny, J. and Dufour, L.-C., Eds., Amsterdam: Elsevier, 1988, p. 449.

    Google Scholar 

  26. Guo, X. and Maier, J., J. Electrochem. Soc., 2001, vol. 148, p. E121.

    Article  CAS  Google Scholar 

  27. Bonch-Bruevich, V.L. and Kalashnikov, S.G., Fizika poluprovodnikov (The Semiconductor Physics), Moscow: Nauka, 1990.

    Google Scholar 

  28. Heine, L., in Mass Transrort in Solids, Veniere, F. and Catlow, C.R.A., Eds., New York: Plenum, 1983, p. 425.

    Google Scholar 

  29. Nowick, A.S., in Diffusion in Crystalline Solids, March, G.M. and Nowick, A.S., Eds., Orlando: Academic, 1984, ch. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Uvarov.

Additional information

Original Russian Text © N.F. Uvarov, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 4, pp. 388–397.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uvarov, N.F. Surface disordering of classic and superionic crystals: A description in the framework of the stern model. Russ J Electrochem 43, 368–376 (2007). https://doi.org/10.1134/S1023193507040027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507040027

Key words

Navigation