Skip to main content
Log in

Simulation of dielectric properties and stability of clusters (H2O) i , CO2(H2O) i , and CH4(H2O) i

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Molecular dynamics method is used for studying complex permittivity ɛ and the stability of individual water clusters as a function of the number of involved molecules (7 ≤ i ≤ 20) and also the corresponding characteristics of water aggregates with a captured CO2 or CH4 molecule. Absorption of the latter molecules leads to considerable changes in dielectric properties and stability of clusters. In particular, upon the addition of a CO2 molecule to a water cluster, the oscillation parameters of the real and imaginary parts of the permittivity change. Capture of a CH4 molecule by a water aggregate changes the ɛ(ω) dependence from the relaxation to resonance type. For i ≥ 15, the thermal stability of individual water clusters can be lower than that of aggregates CO2(H2O) i and CH4(H2O) i . The mechanical stability of (H2O) i ≥ 13 clusters can exceed that of heteroclusters under consideration. Clusters (H2O) i and CO2(H2O) i have approximately the same dielectric stability, whereas aggregates CH4(H2O) i exhibit lower stability with respect to electric perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halmann, M.M. and Steinberg, M., Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Boca Raton: Lewis, 1999.

    Google Scholar 

  2. Mhin, B.J., Lee, S.J., and Kim, K.S., Phys. Rev. A, 1993, vol. 48, p. 3764.

    Article  CAS  Google Scholar 

  3. Lee, J.K., Barker, J.A., and Abraham, F.F., J. Chem. Phys., 1973, vol. 58, p. 3166.

    Article  CAS  Google Scholar 

  4. Kikuchi, R., Adv. Colloid Interface Sci., 1977, vol. 7, p. 67.

    Article  CAS  Google Scholar 

  5. Tse, J.S., Klein, M.L., and McDonald, I.R., J. Chem. Phys., 1983, vol. 78, p. 2096.

    Article  CAS  Google Scholar 

  6. Kirov, M.V., Rasplavy, 1993, no. 3, p. 78.

  7. Bosma, W.B., Fried, L.E., and Mukamel, S., J. Chem. Phys., 1993, vol. 98, p. 4413.

    Article  CAS  Google Scholar 

  8. Caldwell, J., Dang, L.X., and Kollman, P.A., J. Am. Chem. Soc., 1990, vol. 112, p. 9144.

    Article  CAS  Google Scholar 

  9. Brodskaya, E.N. and Rusanov, A.I., Mol. Phys., 1987, vol. 62, p. 251.

    Article  CAS  Google Scholar 

  10. Shevkunov, S.V., Kolloidn. Zh., 2002, vol. 64, p. 270.

    Google Scholar 

  11. Galashev, A.E., Servida, A.E., and Sigon, F., Elektrokhimiya, 1997, vol. 33, p. 189.

    Google Scholar 

  12. Servida, A., Galashev, A.E., and Sigon, F., Vysokochist. Veshch., 1996, no. 1, p. 28.

  13. Galashev, A.E., Pozharskaya, G.I., and Chukanov, V.N., Kolloidn. Zh., 2002, vol. 64, p. 762.

    Google Scholar 

  14. Galashev, A.E., Pozharskaya, G.I., and Chukanov, V.N., Zh. Obshch. Khim., 2003, vol. 73, p. 881.

    Google Scholar 

  15. Galashev, A.E., Chukanov, V.N., and Pozharskaya, G.I., Zh. Strukt. Khim., 2002, vol. 43, p. 486.

    Google Scholar 

  16. Chukanov, V.N. and Galashev, A.E., Perspekt. Energ., 2003, vol. 7, p. 283.

    Google Scholar 

  17. Dang, L.X., J. Chem. Phys., 1994, vol. 100, p. 9032.

    Article  CAS  Google Scholar 

  18. Dang, L.X. and Chang, T-M., J. Chem. Phys., 1997, vol. 106, p. 8149.

    Article  CAS  Google Scholar 

  19. Benedict, W.S., Gailar, N., and Plyler, E.K., J. Chem. Phys., 1956, vol. 24, p. 1139.

    Article  CAS  Google Scholar 

  20. Xantheas, S., J. Chem. Phys., 1996, vol. 104, p. 8821.

    Article  CAS  Google Scholar 

  21. Feller, D. and Dixon, D.A., J. Chem. Phys., 1996, vol. 100, p. 2993.

    Article  Google Scholar 

  22. Smith, D.E. and Dang, L.X., J. Chem. Phys., 1994, vol. 100, p. 3757.

    Article  CAS  Google Scholar 

  23. Sun, Y., Spellmeyer, D., Pearlman, D.A., and Kollman, P., J. Am. Chem. Soc., 1992, vol. 114, p. 6798.

    Article  CAS  Google Scholar 

  24. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6579.

    Article  CAS  Google Scholar 

  25. Spackman, M.A., J. Chem. Phys., 1986, vol. 85, p. 6587.

    Article  CAS  Google Scholar 

  26. Haile, J.M., Molecular Dynamics Simulation: Elementary Methods, New York: Wiley, 1992.

    Google Scholar 

  27. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoi teorii giroskopov (Problems in Solid State Dynamics and Applied Theory of Gyroscopes), Moscow: Nauka, 1985.

    Google Scholar 

  28. Sonnenschein, R., J. Comp. Phys., 1985, vol. 59, p. 347.

    Article  CAS  Google Scholar 

  29. Fanourgakis, G.S., Apra, E., and Xantheas, S.S., Chem. Phys., 2004, vol. 121, p. 2655.

    Article  CAS  Google Scholar 

  30. Semenchenko, V.K., Izbrannye glavy teoreticheskoi fisiki (Some Problems in Theoretical Physics), Moscow: Prosveshchenie, 1966.

    Google Scholar 

  31. Lebowitz, J.L., Phys. Rev., 1967, vol. 153, p. 250.

    Article  CAS  Google Scholar 

  32. Hill, T.L., Statistical Mechanics: Principles and Selected Applications, New York: McGraw-Hill, 1956.

    Google Scholar 

  33. Hockney, R. and Eastwood, J., Computer Simulation Using Particles, New York: McGraw-Hill, 1981.

    Google Scholar 

  34. Anderson, J., Ullo, J.J., and Yip, S., J. Chem. Phys., 1987, vol. 87, p. 1726.

    Article  CAS  Google Scholar 

  35. Neumann, M., J. Chem. Phys., 1985, vol. 82, p. 5663.

    Article  CAS  Google Scholar 

  36. Kuni, F.M., Statisticheskaya fizika i termodinamika (Statistical Physics and Thermodynamics), Moscow: Nauka, 1981.

    Google Scholar 

  37. Brodskaya, E.N. and Rusanov, A.I., Mol. Phys., 1990, vol. 71, p. 567.

    Article  CAS  Google Scholar 

  38. Thompson, S.M., Gubbins, K.E., Walton, J.P., Chantry, R.A., and Rowlinson, J.S., J. Chem. Phys., 1984, vol. 81, p. 530.

    Article  CAS  Google Scholar 

  39. Goronovskii, I.T., Nazarenko, Yu.P., and Nekryach, E.F., Kratkii spravochnik po khimii (A Concise Reference Book on Chemistry), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  40. Bredov, M.M., Rumyantsev, V.V., and Toptygin, I.N., Klassicheskaya elektrodinamika (The Classic Thermodynamics), St. Petersburg: Lan’, 2003.

    Google Scholar 

  41. Neumann, M., J. Chem. Phys., 1986, vol. 85, p. 1567.

    Article  CAS  Google Scholar 

  42. Angel, C.A. and Rodgers, V., J. Chem. Phys., 1984, vol. 80, p. 6245.

    Article  Google Scholar 

  43. Hasted, J.B., Husain, S.K., Frescura, F.A.M., and Birch, J.R., Chem. Phys. Lett., 1984, vol. 118, p. 622.

    Article  Google Scholar 

  44. Bartell, L.S., J. Phys. Chem., 1997, vol. 101, p. 7573.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

Original Russian Text © A.E. Galashev, V.N. Chukanov, A.N. Novruzov, O.A. Novruzova, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 2, pp. 143–153.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E., Chukanov, V.N., Novruzov, A.N. et al. Simulation of dielectric properties and stability of clusters (H2O) i , CO2(H2O) i , and CH4(H2O) i . Russ J Electrochem 43, 136–145 (2007). https://doi.org/10.1134/S1023193507020024

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507020024

Key words

Navigation