Skip to main content
Log in

Effect of the displacement reaction on the composition of the magnetic layer in electrodeposited layered nanostructures Co-Cu/Cu and Ni-Cu/Cu

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Methods of stripping voltammetry, quartz microgravimetry, and x-ray-fluorescence analysis are employed to explore the copper displacement process on thin electrodeposited layers of pure cobalt and nickel and on deposits of these metals with inclusions of copper. The displacement reaction proceeds at a considerable rate on cobalt in the sulfate and sulfosalicylate solutions and virtually does not proceed on nickel in both the sulfate or sulfate-chloride solutions. An estimate of the rate of the copper displacement reaction following a change in the concentration of copper ions in the solution and in the pH of the sulfosalicylate solution is given. A decrease in the contact exchange rate is facilitated by a decrease in the concentration of copper ions in solution and their participation in the formation of complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwarzacher, W. and Lashmore, D.S., IEEE Trans. Mag., 1996, vol. 32, p. 3133.

    Article  CAS  Google Scholar 

  2. Ovchinnikova, S.N., Poddubnyi, N.P., Maslii, A.I., Boldyrev, V.V., and Schvartsakher, W., Elektrokhimiya, 2002, vol. 38, p. 1339.

    Google Scholar 

  3. Ovchinnikova, S.N., Maslii, A.I., and Boldyrev, V.V., Elektrokhimiya, 2006, vol. 42, p. 980.

    Google Scholar 

  4. Lenczowski, S.K.J., Schonenberger, C., Gijs, M.A.M., and de Jonge, W.J.M., J. Magn. Magn. Mater., 1995, vol. 148, p. 455.

    Article  CAS  ADS  Google Scholar 

  5. Alper, M., Schwarzacher, W., and Lane, S.J., J. Electrochem. Soc., 1997, vol. 144, p. 2346.

    Article  CAS  Google Scholar 

  6. Peter, L., Cziraki, A., Pogany, L., Kupay, Z., Bakonyi, I., Uhlemann, M., Herrich, M., Arnold, B., Bauer, T., and Wetzig, K., J. Electrochem. Soc., 2001, vol. 148, p. 168.

    Article  Google Scholar 

  7. Roy, S., Matlosz, M., and Landolt, D., J. Electrochem. Soc., 1994, vol. 141, p. 1509.

    Article  CAS  Google Scholar 

  8. Gómes, E., Labarta, A., Llorente, A., and Vallés, E., Electrochim. Acta, 2003, vol. 48, p. 1005.

    Article  Google Scholar 

  9. Zhang, J., Moldovan, M., Young, D.P., and Podlaha, E.J., J. Electrochem. Soc., 2005, vol. 152, p. 626.

    Article  Google Scholar 

  10. Meuleman, W.R.A., Roy, S., Peter, L., and Bakonyi, I., J. Electrochem. Soc., 2004, vol. 151, p. 256.

    Article  Google Scholar 

  11. Despiç, A.R. and Joviç, V.D., J. Electrochem. Soc., 1987, vol. 134, p. 3004.

    Article  Google Scholar 

  12. Roy, S., Surf. Coat. Technol., 1998, vol. 105, p. 202.

    Article  CAS  Google Scholar 

  13. Shima, M., Salamanca-Riba, L.G., McMichael, R.D., and Moffat, T.P., J. Electrochem. Soc., 2001, vol. 148, p. 518.

    Article  Google Scholar 

  14. Bradley, P.E. and Landolt, D., Electrochim. Acta, 1997, vol. 42, p. 993.

    Article  CAS  Google Scholar 

  15. Roy, S., Plat. Surf. Finish., 1999, vol. 86, p. 76.

    CAS  Google Scholar 

  16. Tench, D.M. and White, J.T., J. Electrochem. Soc., 1992, vol. 139, p. 443.

    Article  CAS  Google Scholar 

  17. Ross, C.A., Ann. Rev. Mater. Sci., 1994, vol. 24, p. 159.

    Article  CAS  Google Scholar 

  18. Kelly, J.J., Cantony, M., and Landolt, D., J. Electrochem. Soc., 2001, vol. 148, p. 620.

    Article  Google Scholar 

  19. Bradley, P.E. and Landolt, D., Electrochim. Acta, 1999, vol. 45, p. 1077.

    Article  CAS  Google Scholar 

  20. Brainina, Kh.Z., Neiman, E.Ya., and Slepushkin, V.V., Inversionnye elektroanaliticheskie metody (The Stripping Electroanalytical Methods), Moscow: Khimiya, 1988.

    Google Scholar 

  21. Rotinyan, A.L. and Kheifets, V.L., Teoreticheskie osnovy kontaktnogo vytesneniya metallov (Theoretical Foundations for Contact Deposition of Metals), Leningrad: Leningr. Khim.-Technol. Inst., 1979, p. 9.

    Google Scholar 

  22. Aleksandrova, T.P., Ovchinnikova, S.N., Vais, A.A., and Bek, R.Yu., Zh. Anal. Khim., 1999, vol. 54, p. 719.

    Google Scholar 

  23. Zelinskii, A.G. and Bek, R.Yu., Elektrokhimiya, 1985, vol. 21, p. 66.

    CAS  Google Scholar 

  24. Kletenik, Yu.B. and Aleksandrova, T.P., Zh. Anal. Khim., 1997, vol. 52, p. 752.

    Google Scholar 

  25. Ovchinnikova, S.N., Poddubnyi, N.P., and Maslii, A.I., Elektrokhimiya, 2003, vol. 39, p. 752.

    Google Scholar 

  26. Vetter, K.J., Elektrochemische Kinetik, Berlin: Springer, 1961.

    Google Scholar 

  27. Stender, V.V., Prikladnaya elektrokhimiya (Applied Electrochemistry), Kharkov: Kharkov. Univ., 1961.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Ovchinnikova.

Additional information

Original Russian Text © S.N. Ovchinnikova, A. I. Maslii, 2006, published in Elektrokhimiya, 2006, Vol. 42, No. 11, pp. 1376–1384.

Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22, 2005, Moscow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovchinnikova, S.N., Maslii, A.I. Effect of the displacement reaction on the composition of the magnetic layer in electrodeposited layered nanostructures Co-Cu/Cu and Ni-Cu/Cu. Russ J Electrochem 42, 1235–1243 (2006). https://doi.org/10.1134/S1023193506110103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193506110103

Key words

Navigation