Russian Journal of Electrochemistry

, Volume 42, Issue 11, pp 1193–1201

Poly(3,4-ethylenedioxythiophene)-modified nafion membrane for direct methanol fuel cells



Membranes Nafion 117 are modified with poly(3,4-ethylenedioxythiophene) (PEDT) by chemical polymerization of EDT with H2O2 or FeCl3 as the oxidants in a two-compartment cell. Depending on the oxidant and polymerization conditions, PEDT is deposited either as a thin film on the membrane surface or inside the Nafion membrane depending on whether FeCl3 or H2O2 is used as the oxidant. The decrease in the ionic conductivity and methanol permeability is studied as a function of the polymerization time. A linear dependence is found with H2O2 and a t−1/2 dependence, with FeCl3. The contributions of PEDT and Nafion to the overall conductivity of the composite membranes are separated by impedance measurements. The modified membranes (FeCl3) are also tested in direct methanol fuel cells (DMFC). The methanol permeation through the membranes is measured by operating the fuel cell in an electrolysis mode. The influence of the modified membranes on the DMFC current-voltage characteristics is studied with 2 M CH3OH and O2 at 1.2 barabs and 80°C. Membrane electrode assemblies (MEAs) are prepared by hot pressing the modified membrane between two commercial gas diffusion electrodes with 1 mg cm−2 of Pt loading. A decrease of the methanol permeation of 25% is observed at MEA with the modified membrane (1 h polymerization time), compared with that of MEA with a Nafion membrane. However, the overall DMFC performance decreases in the same relation: a maximal power density of 36 W cm−2 is measured at MEA with a PEDT-modified membrane compared with 45 W cm−2 for MEA with a Nafion membrane.

Key words

Nafion membrane conducting polymer direct methanol fuel cell methanol permeability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heinzel, A. and Barragan, V.M., J. Power Sources, 1999, vol. 84, p. 70.CrossRefGoogle Scholar
  2. 2.
    Ma, Z.Q., Cheng, P., and Zhao, T.S., J. Membr. Sci., 2003, vol. 215, p. 327.CrossRefGoogle Scholar
  3. 3.
    Choi, W.C., Kim, J.D., and Woo, S.I., J. Power Sources, 2001, vol. 96, p. 411.CrossRefGoogle Scholar
  4. 4.
    Deluga, C. and Pivovar, B.S., Proc. 3rd Int. Symp. “New Materials for Electrochemical Systems,” Montreal, 1999, p. 132.Google Scholar
  5. 5.
    Feichtinger, J., Kerres, J., Schulze, A., Walker, M., and Schumacher, U., J. New Mater. Electrochem. Syst., 2002, vol. 5, p. 162.Google Scholar
  6. 6.
    Liu, J., Wang, H.T., Cheng, S.A., and Chan, K.-Y., J. Membr. Sci., 2005, vol. 246, p. 95.CrossRefGoogle Scholar
  7. 7.
    Shao, Z.G., Wang, X., and Hsing, I.M., J. Membr. Sci., 2002, vol. 210, p. 147.CrossRefGoogle Scholar
  8. 8.
    Banaszak, R.A., Arbaugh, S.A., Steffee, E.D., and Pyati, R., J. Electrochem. Soc., 2004, vol. 151, p. 1020.CrossRefGoogle Scholar
  9. 9.
    Dimitrova, P., Friedrich, K.A., Stimming, U., and Vogt, B., Solid State Ionics, 2002, vol. 150, p. 115.CrossRefGoogle Scholar
  10. 10.
    Tricoli, V., Carretta, N., and Bartolozzi, M., J. Electrochem. Soc., 2000, vol. 147, p. 1286.CrossRefGoogle Scholar
  11. 11.
    Savadogo, O., J. Power Sources, 2004, vol. 127, p. 135.CrossRefGoogle Scholar
  12. 12.
    Jüttner, K., Mangold, K.-M., Lange, M., and Bouzek, K., Russ. J. Electrochem., 2004, vol. 40, p. 317.CrossRefGoogle Scholar
  13. 13.
    Moravcová, S., Cilová, Z., and Bouzek, K., J. Appl. Electrochem., 2005, vol. 35, p. 991.CrossRefGoogle Scholar
  14. 14.
    Moravcová, S. and Bouzek, K., J. Electrochem. Soc., 2005, vol. 152, p. A2080.CrossRefGoogle Scholar
  15. 15.
    Langsdorf, B.L., Sultan, J., and Pickup, P.G., J. Phys. Chem. B, 2003, vol. 107, p. 8412.CrossRefGoogle Scholar
  16. 16.
    Easton, E.B., Langsdorf, B.L., Hughes, J.A., Sultan, J., Qi, Z.G., Kaufman, A., and Pickup, P.G., J. Electrochem. Soc., 2003, vol. 150, p. 735.CrossRefGoogle Scholar
  17. 17.
    Zhu, J., Sattler, R.R., Garsuch, A., Yepez, O., and Pickup, P.G., Electrochim. Acta (in press).Google Scholar
  18. 18.
    Li, L., Drillet, J.-F., Dittmeyer, R., and Jüttner, K., J. Solid State Electrochem. (in press).Google Scholar
  19. 19.
    Ehrenbeck, C. and Jüttner, K., Electrochim. Acta, 1996, vol. 41, p. 1851.Google Scholar
  20. 20.
    Schmitz, R.H.J. and Jüttner, K., Electrochim. Acta, 1999, vol. 44, p. 1627.CrossRefGoogle Scholar
  21. 21.
    Tricoli, V., J. Electrochem. Soc., 1998, vol. 145, p. 3798.CrossRefGoogle Scholar
  22. 22.
    Tan, S., Tieu, J.H., and Belanger, D., J. Phys. Chem. B, 2005, vol. 109, p. 14085.PubMedCrossRefGoogle Scholar
  23. 23.
    Vorotyntsev, M.A., Daikhin, L.I., and Levi, M.D., J. Electroanal. Chem., 1994, vol. 364, p. 37.CrossRefGoogle Scholar
  24. 24.
    Deslouis, C., Musiani, M.M., Tribollet, B., and Vorotyntsev, M.A., J. Electrochem. Soc., 1995, vol. 142, p. 1902.CrossRefGoogle Scholar
  25. 25.
    Mathias, M.F. and Haas, O., J. Phys. Chem., 1992, vol. 96, p. 3174.CrossRefGoogle Scholar
  26. 26.
    Albery, W.J., Elliott, C.M., and Mount, R., J. Electroanal. Chem., 1990, vol. 288, p. 15.CrossRefGoogle Scholar
  27. 27.
    Ren, X. and Pickup, P.G., J. Electrochem. Soc., 1992, vol. 139, p. 2097.CrossRefGoogle Scholar
  28. 28.
    Ehrenbeck, C., Jüttner, K., Ludwig, S., and Paasch, G., Electrochim. Acta, 1998, vol. 43, p. 2781.CrossRefGoogle Scholar
  29. 29.
    Jüttner, K., Schmitz, R.H.J., and Hudson, A., Electrochim. Acta, 1999, vol. 44, p. 4177.CrossRefGoogle Scholar
  30. 30.
    de Levie, R., Advances in Electrochemistry and Electrochemical Engineering, Delahay, P., Ed., New York, Intersicence, 1967, vol. 6. p. 329.Google Scholar
  31. 31.
    Ren, X., Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., J. Electrochem. Soc., 2000, vol. 147, p. 466.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  1. 1.Karl Winnacker InstituteFrankfort on the MainGermany

Personalised recommendations