Russian Journal of Electrochemistry

, Volume 42, Issue 10, pp 1055–1060 | Cite as

Electrocatalytic activity of sol-gel-prepared RuO2/Ti anode in chlorine and oxygen evolution reactions

  • V. V. PanićEmail author
  • A. B. Dekanski
  • S. K. Milonjić
  • V. B. Mišković-Stanković
  • B. Ž. Nikolić


Electrocatalytic properties of RuO2/Ti anode with different coating masses, which are prepared by the alkoxide sol-gel procedure, are investigated in chlorine and oxygen evolution reactions by polarization measurements and electrochemical impedance spectroscopy in H2SO4 and NaCl electrolytes. According to polarization measurements, the activity of anodes at overpotentials below 100 mV is independent of coating mass. However, impedance measurements above 100 mV reveal changes in the activity of anodes in chlorine evolution reaction for different coating masses. The diffusion limitations related to the evolved chlorine are registered in low-frequency domain at 1.10 V (SCE), diminishing with the increase in potential to the 1.15 V (SCE). The observed impedance behavior is discussed with respect to the activity model for activated titanium anodes in chlorine evolution reaction involving formation of gas channels within porous coating structure. Gas channels enhance the mass transfer rate similarly to the forced convection, which also increases the activity of anode. This is more pronounced for the anode of greater coating mass due to its more compact surface structure. The more compact structure appears to be beneficial for gas channels formation.

Key words

electrocatalysis RuO2/Ti anode chlorine evolution oxygen evolution sol-gel method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trasatti, S. and O’Grady, W., in Advances in Electrochemistrey and Electrochemical Engineering, Gerisher, H. and Tobias, C.W., Eds., New York: Wiley, 1981, vol. 12.Google Scholar
  2. 2.
    Cornell, A. and Herlitz, F., Proc. 4th Kurt Schwabe Corrosion Symp., Helsinki, 2004, p. 326.Google Scholar
  3. 3.
    Trasatti, S., in Interfacial Electrochemistry: Theory, Experiment, and Applications, Wieckowski, A., Ed., New York: Marcel Dekker, 1999, p. 769.Google Scholar
  4. 4.
    Jow, T. and Zheng, J., J. Electrochem. Soc., 1998, vol. 145, p. 49.CrossRefGoogle Scholar
  5. 5.
    Conway, B.E., Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York: Kluwer Academic/Plenum, 1999.Google Scholar
  6. 6.
    Panić, V., Vidaković, T., Gojković, S., Dekanski, A., Milonjić, S., and Nikolić, B., Electrochim. Acta, 2003, vol. 48, p. 3805.CrossRefGoogle Scholar
  7. 7.
    Komeyama, K., Shohji, S., Onoue, S., Nishimura, K., Yahikozawa, K., and Takasu, Y., J. Electrochem. Soc., 1993, vol. 140, p. 1034.CrossRefGoogle Scholar
  8. 8.
    Paniç, V., Dekanski, A., Milonjić, S., Atanasoski, R., and Nikolić, B., Colloids Surf. A, 1999, vol. 157, p. 269.CrossRefGoogle Scholar
  9. 9.
    Paniç, V., Dekanski, A., Wang, G., Fedoroff, M., Milonjiç, S., and Nikolić, B., J. Colloid Interface Sci., 2003, vol. 263, p. 68.CrossRefGoogle Scholar
  10. 10.
    Krishtalik, L., Electrochim. Acta, 1981, vol. 26, p. 329.CrossRefGoogle Scholar
  11. 11.
    Krishtalik, L., in Comprehensive Treatise of Electrochemistry, Conway, B., Bockris, J.O’M., Yeager, E., Khan, S., and White, R., Eds., New York: Plenum, 1983, vol. 7, p. 87.Google Scholar
  12. 12.
    Christensen, P.A. and Hamnet, A., Techniques and Mechanisms in Electrochemistry, New York: Springer, 1994, p. 154.Google Scholar
  13. 13.
    Li, B., Hillman, A.R., and Lubetkin, S.D., Electrochim. Acta, 1992, vol. 37, p. 2715.CrossRefGoogle Scholar
  14. 14.
    Lodi, G., Sivieri, E., De Battisti, A., and Trasatti, S., J. Appl. Electrochem., 1978, vol. 8, p. 135.CrossRefGoogle Scholar
  15. 15.
    Chang, C.C. and Wen, T.C., J. Appl. Electrochem., 1997, vol. 27, p. 355.CrossRefGoogle Scholar
  16. 16.
    Gajić-Krstajić, L.M., Trisović, T.L., and Krstajić, N.V., Corros. Sci., 2004, vol. 46, p. 65.CrossRefGoogle Scholar
  17. 17.
    Armelao, L., Barreca, D., and Moraru, B., J. Noncryst. Solids, 2003, vol. 316, p. 364.CrossRefGoogle Scholar
  18. 18.
    Panić, V., Dekanski, A., Miškoviç-Stanković, V.B., Milownjiç, S., and Nikolić, B, J. Electroanal. Chem., 2005, vol. 579, p. 67.CrossRefGoogle Scholar
  19. 19.
    Chizmadzev, Yu. and Chirkov, Yu., in Comprehensive Threatise of Electrochemistry, Yeager, E., Bockris, J.O’M., Conway, B., and Sarangapani, S., Eds., New York: Plenum, 1983, vol. 6, ch. 5.Google Scholar
  20. 20.
    Evdokimov, S.V., Russ. J. Electrochem., 2000, vol. 36, p. 609.Google Scholar
  21. 21.
    Panić, V., Dekanski, A., Milonjiç, S., Atanasoski, R., and Nikolić, B., Electrochim. Acta, 2000, vol. 46, p. 415.CrossRefGoogle Scholar
  22. 22.
    Paniç, V., Dekanski, A., Milonjić, S., Atanasoski, R., and Nikoliç, B., Mater. Sci. Forum, 2000, vol. 352, p. 117.CrossRefGoogle Scholar
  23. 23.
    Mattos-Costa, F.I., de Lima-Neto, P., Machado, S.A.S., and Avaca, L.A., Electrochim. Acta, 1998, vol. 44, p. 1515.CrossRefGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • V. V. Panić
    • 1
    Email author
  • A. B. Dekanski
    • 1
  • S. K. Milonjić
    • 2
  • V. B. Mišković-Stanković
    • 3
  • B. Ž. Nikolić
    • 3
  1. 1.Institute of Chemistry, Technology, and MetallurgyBelgradeSerbia and Montenegro
  2. 2.Vinča Institute of Nuclear SciencesBelgradeSerbia and Montenegro
  3. 3.University of BelgradeBelgradeSerbia and Montenegro

Personalised recommendations