Skip to main content
Log in

Electrochemical behavior of fullerene C60 and substituted fullerenes immobilized on an electrode surface

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The effect of substituents with different donor capabilities, which are inserted into a molecule of fullerene C60, on the kinetics and thermodynamics of redox conversions of fullerenes that are immobilized on an electrode, is studied for the first time. To this end, redox conversions that occur with rubbed-on films of fullerene and fulleropyrrolidines are studied using cyclic voltammetry in 0.5 M KCl/H2O and a 0.1 M (C4H9)4NBF4/AN solution in acetonitrile. A hypothesis that the kinetics of redox conversions occurring with films of individual fullerenes is defined largely by changes in the structure of initial films in the process of their cathodic doping is used. The effect of the substituents is explained in the framework of this hypothesis by a transition from a dense crystalline structure of nonsubstituted fullerene C60 to an amorphous structure of substituted fullerenes. It is demonstrated that the formal potentials corresponding to redox conversions of fullerenes in a solid cationic lipid matrix are defined by the energy of interaction of anions, which are products of reduction of fullerenes, with cations of the matrix. As a result of this interaction, the formal potentials of the process of cathodic doping shift to less negative values. It is established that the insertion of a donor substituent and increase in its donor capability amplify the energy of interaction of the fullerene anions with the lipid cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Khouly, M.E., Ito, O., Smith, P.M., and D’souza, F., J. Photochem. Photobiol. C, 2004, vol. 5, p. 75.

    Google Scholar 

  2. Guldi, D.M., Chem. Soc. Rev., 2004, vol. 31, p. 22.

    Article  Google Scholar 

  3. Tat, F.T., Zhou, Z., MacMahon, S., Song, F., Rheingold, A.L., Echegoyen, L., Schuster, D.I., Wilson, S.R., J. Org. Chem., 2004, vol. 69, p. 4602.

    Article  CAS  Google Scholar 

  4. Gol’dshleger, N.F., Lapshin, A.N., Yudanova, E.I., Alpatova, N.M., and Ovsyannikova, E.V., Elektrokhimiya, 2006, vol. 42, p. 19.

    Google Scholar 

  5. Chlistunoff, J., Cliffel, D., and Bard, A.J., Thin Solid Films, 1995, vol. 257, p. 166.

    Article  CAS  Google Scholar 

  6. Song, F. and Echegoyen, L., J. Phys. Chem. B, 2003, vol. 107, p. 5844.

    Article  CAS  Google Scholar 

  7. Tan, W.T., Lim, E.B., and Bond, A.M., J. Solid State Electrochem., 2003, vol. 7, p. 134.

    CAS  Google Scholar 

  8. Nakashima, N., Kuriyama, T., Tokunaga, T., Murakami, H., and Sagara, T., Chem. Lett., 1998, p. 633.

  9. Nakashima, N., Nonaka, Yu., Nakanishi, T., Sagara, T., and Murakami, H., J. Phys. Chem., B, 1998, vol. 102, p. 7328.

    Article  CAS  Google Scholar 

  10. Nakanishi, T., Ohwaki, H., Tanaka, H., Murakami, H., Sagara, T., and Nakashima, N., J. Phys. Chem. B, 2004, vol. 108, p. 7754.

    Article  CAS  Google Scholar 

  11. Troshin, P.A., Troyanov, A.I., Boiko, G.M., Lyubovskaya, R.N., Lapshin, A.N., and Goldshleger, N.F., Fuller., Nanotub., Carbon Nanostruct., 2004, vol. 12, p. 43.

    Google Scholar 

  12. Szücs, Á., Tölgyesi, M., Csiszár, M., Nagy, J.B., and Novák, M., J. Electroanal. Chem., 1998, vol. 442, p. 59.

    Article  Google Scholar 

  13. Tan, W.T., Lim, E.B., and Goh, J.K., J. Solid State Electrochem., 2005, vol. 9, p. 30.

    Article  CAS  Google Scholar 

  14. Krause, M., Deusch, D., Janda, P., Kavan, L., and Dunsch, L., Phys. Chem. Chem. Phys., 2005, vol. 7, p. 3179.

    Article  CAS  Google Scholar 

  15. Krinichnaya, E.P., Moravsky, A.P., Efimov, O.N., Sobczak, K., Winkler, K., Kutner, W., and Balch, A.L., J. Mater. Chem., 2005, vol. 15, p. 1468.

    Article  CAS  Google Scholar 

  16. Koh, W., Dubois, D., Kutner, W., Jones, M.T., and Kadish, K.M., J. Phys. Chem., 1993, vol. 97, p. 6871.

    Article  CAS  Google Scholar 

  17. Kvarnström, C., Neugebauer, N., Kuzmany, H., Sitter, H., and Sariciftci, N.S., J. Electroanal. Chem., 2001, vol. 511, p. 13.

    Article  Google Scholar 

  18. Nakanishi, T., Morita, M., Sagara, T., and Nakashima, N., Chem.-Eur. J., 2002, vol. 8, p. 1641.

    Article  CAS  Google Scholar 

  19. Krishtalik, L.I., Alpatova, N.M., and Ovsyannikova, E.V., Electrochim. Acta, 1991, vol. 36, p. 435.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.F. Gol’dshleger, E.V. Ovsyannikova, A.N. Lapshin, O.N. Efimov, R.N. Lyubovskaya, N.M. Alpatova, 2006, published in Elektrokhimiya, 2006, Vol. 42, No. 7, pp. 853–861.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gol’dshleger, N.F., Ovsyannikova, E.V., Lapshin, A.N. et al. Electrochemical behavior of fullerene C60 and substituted fullerenes immobilized on an electrode surface. Russ J Electrochem 42, 767–775 (2006). https://doi.org/10.1134/S102319350607010X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102319350607010X

Key words

Navigation